Green’s function representation

where for x ∈ ZN we set € p N ∗ f Š x ≡ X z ∈ZN pN x − z f z 35 and E 3 t φ ≡ X k=0,1 1 − 2k X m ≥2,i, j=0,1 1 N X x X y 1 ,..., y m ∼x X z Z t 1 ξ s − x = k × 1 ξ s − y 1 = j m Y l=2 1 ξ s − y l = 1 − k 1 ξ s − z = i φ s x ×    dQ m,i, j,k s x; y 1 , . . . , y m ; z − q k,m,N i j 2cN m N m 2 pN x − zds    . We have suppressed the dependence on N in E 3 t φ. Here, E 3 t φ is a martingale with predictable brackets process given by E 3 φ t ≤ X m ≥2,i, j,k=0,1 q k,m,N i j 1 N 2 X x m Y l=0 X y l ∼x 1 2cN N 1 2 X z pN x − z Z t φ 2 s xds 36 ≤ 1 N X m ≥2,i, j,k=0,1 q k,m,N i j Z t kφ s k 2 λ 〈e −2λ , 1 〉ds. Taking the above together we obtain the following approximate semimartingale decomposition from 26. 〈ν t , φ t 〉 =〈ν , φ 〉 + Z t 〈ν s , ∂ s φ s 〉ds + Z t 〈ν s − , ∆ φ s 〉ds + E 1 t φ + M t φ + E 3 t φ 37 + X k=0,1 1 − 2k X m ≥2,i, j=0,1 q k,m,N i j Z t 〈 € F j ◦ Aξ s − Š × F 1 −k ◦ Aξ s − m −1 € F i ◦ p N ∗ ξ s − Š 1 ξ s − · = k , φ s 〉ds. Remark 3.3. Note that this approximate semimartingale decomposition provides the link between our approximate densities and the limiting SPDE in 21 for the case with no short-range competition. Indeed, uniqueness of the limit u t of A ξ N t will be derived by proving that u t solves the martingale problem associated with the SPDE 21.

3.5 Green’s function representation

Analogous to [13], define a test function ψ z t x ≥ 0 for t ≥ 0, x, z ∈ N −1 Z 635 as the unique solution, satisfying 25 and such that ∂ ∂ t ψ z t = ∆ ψ z t , ψ z x = N 1 2 2cN 1x ∼ z 38 with ∆ ψ z t x = N − θ N 2cN N 1 2 X y ∼x ψ z t y − ψ z t x 39 as in 24. Note that ψ z was chosen such that 〈ν t , ψ z 〉 = Aξ t z and that we suppress the depen- dence on N . Next observe that ∆ is the generator of a random walk X t ∈ N −1 Z , jumping at rate N −θ N 2cN N 1 2 € 2cN N 1 2 Š = N − θ N = 1 + o1N with symmetric steps of variance 1 N € 1 3 + o1 Š , where we used that cN N →∞ → 1. Here o1 denotes some deterministic function that satisfies o1 → 0 for N → ∞. Define ¯ ψ z t x = N PX t = x|X = z then 〈ψ z , ¯ ψ x t 〉 = N 1 2 2cN X y ∼z P X t = y|X = x = E x ” ψ z X t — = ψ z t x. 40 As we shall see later in Lemma 3.9b, when linearly interpolated, the functions ψ z t x and ¯ ψ z t x converge to p € t 3 , z − x Š the proof follows, where pt, x = 1 p 2 πt e − x2 2t is the Brownian transition density. 41 The next lemma gives some information on the test functions ψ and ¯ ψ from above. Later on, this will provide us with estimates necessary for establishing tightness. Lemma 3.4. There exists N ∞ such that for N ≥ N , T ≥ 0, z ∈ N −1 Z , λ ≥ 0, a 〈ψ z t , 1 〉 = 〈 ¯ ψ z t , 1 〉 = 1 and kψ z t k ≤ C N 1 2 for all t ≥ 0. b 〈e λ , ψ z t + ¯ ψ z t 〉 ≤ Cλ, T e λ z for all t ≤ T , c kψ z t k λ ≤ Cλ, T € N 1 2 ∧ t −23 Š e λ z for all t ≤ T , d 〈 ¯ ψ z t − ¯ ψ z s , 1 〉 ≤ 2N|t − s| for all s, t ≥ 0. If we further restrict ourselves to N ≥ N , N −34 ≤ s t ≤ T, y, z ∈ N −1 Z , | y − z| ≤ 1, then e kψ z t − ψ y t k λ ≤ Cλ, T e λ z € |z − y| 1 2 t −1 + N −12 t −32 Š , f kψ z t − ψ z s k λ ≤ Cλ, T e λ z € |t − s| 1 2 s −32 + N −12 s −32 Š , g D € ψ z t , N −12 Š · λ ≤ Cλ, T e λ zN −14 t −1 . 636 Proof. First we shall derive an explicit description for the test functions ψ z t and ¯ ψ z t . We proceed as at the beginning of Section 4 in [13] by using that ∆ as in 39 is the generator of a random walk. Let Y i i=1,2,... be i.i.d. and uniformly distributed on jN −1 : 0 | j| ≤ p N . Set ρt = E ” e i t Y 1 — and S k = k X i=1 Y i . 42 Note that E[Y 2 1 ] ≡ c 2 N 3N , where c 2 N → 1 for N → ∞ c 2 N corresponds to c 3 = c 3 N in [13]. Similarly, E[Y 4 1 ] ≡ c 4 N 5N 2 , where c 4 N → 1 for N → ∞. The relation between the test functions ψ z t , ¯ ψ z t and S k is as follows. ψ z t x = E x ” ψ z X t — = ∞ X k=0 N − θ N t k k e −N−θ N t N PS k+1 = x − z, 43 ¯ ψ z t x = N PX t = x|X = z = ∞ X k=0 N − θ N t k k e −N−θ N t N PS k = x − z. Now we can start proving the above lemma. a follows as in the proof of Lemma 3a, [13], using that PS k = x ≤ C N −12 for all x ∈ N −1 Z , k ≥ 1. b follows as in the proof of Lemma 3b, [13], where we shall use the bound E[e µY 1 ] ≤ exp ¦ µ 2 N © for all µ ≥ 0 to obtain the claim. Indeed, as Y 1 is uniformly distributed on jN −1 : | j| ≤ p N , we have E [e µY 1 ] = 1 cN p N ⌊ p N ⌋ X j=1 cosh µ jN ≤ 1 cN p N ⌊ p N ⌋ X j=1 e µ 2 j 2 N 2 ≤ e µ 2 N . c Following the proof of Lemma 3c in [13], one can show that for k ∈ N and |x| ≥ 1, PS k = x ≤ 1 N P S k ≥ |x| − 1, which we can use to obtain PS k = x ≤ 1 N e −µ|x|−1 exp ¦ 5k µ 2 1 N © . Substituting this bound into 43 gives for any µ ≥ 0 ψ z t x ≤ Cµ, T exp −µ|x − z| 44 for all t ≤ T and |x − z| ≥ 1. From 43 we further have for N big enough recall the notation pt, x from 41 ψ z t x ≡ E p c 2 N P t + 1 3N , x − z + EN , t, x − z, where P t ∼ PoisN − θ N t. Using Corollary B.2 we get as in the proof of [13], Lemma 3c, |EN, t, x| ≤ C 1 N € 1 + t −32 Š for N −34 ≤ t. Here we used that for P ∼ Poisr, r 0 we have E [P + 1 a ] ≤ Car a for all a 0. 637 This is obviously true for 0 r 1. For r ≥ 1 fixed, prove the claim first for all a ∈ Z. Then extend this result to general a 0 by an application of Hölder’s inequality. Using the trivial bound pt, x ≤ C t −12 we get from the above ψ z t x ≤ CT t −23 for N −34 ≤ t ≤ T. Finally, we obtain with 44 and part a that kψ z t k λ ≤ sup {x:|x−z|≥1} ¦ C λ, T e −λ|x−z| e λ|x| © ∨ sup {x:|x−z|1,N −34 ≤t≤T } ¦ CT t −23 e λ|x| © ∨ sup {x:|x−z|1,0≤t≤N −34 } ¦ C N 1 2 e λ|x| © ≤Cλ, T € N 1 2 ∧ t −23 Š e λ z for all t ≤ T. This proves part c. d follows along the lines of the proof of [13], Lemma 3d. e For the remaining parts e-g we fix N −34 ≤ s t ≤ T, y, z ∈ N −1 Z , | y − z| ≤ 1. For part e we follow the reasoning of the proof of [13], Lemma 3e. The only change occurs in the derivation of the last estimate. In summary, we find as in [13] that kψ z t − ψ y t k ≤ CT € |z − y|t −1 + N −1 t −32 Š . 45 Now recall 44 with µ = 2λ to get ψ z t x + ψ y t x ≤ Cλ, T exp{−2λ|x − z|} for |x − z| ≥ 1, |x − y| ≥ 1, | y − z| ≤ 1 and thus in particular for |x − z| ≥ 2, | y − z| ≤ 1. This yields kψ z t − ψ y t k λ ≤ sup {x:|x−z|2} kψ z t − ψ y t k e λ x + sup {x:|x−z|≥2} n C λ, T kψ z t − ψ y t k 1 2 e −λ|x−z| e λ x o ≤Cλ, T e λ z kψ z t − ψ y t k + kψ z t − ψ y t k 1 2 ≤Cλ, T e λ z € |z − y| 1 2 t −1 + N −12 t −32 Š . This proves e. f The proof of part f follows analogously to the proof of part e, with changes as suggested in the proof of [13], Lemma 3f. g Finally, to prove part g, use part e, ψ z t y = ψ y t z see 43 and the definition of D € ψ z t , N −12 Š x = sup ¦ ψ z t y − ψ z t x : |x − y| ≤ N −12 , y ∈ N −1 Z © to get k D € ψ z t , N −12 Š ·k λ 44 ≤ Cλ sup {x:|x−z|2} sup y: |x− y|≤N −12 ¦ ψ z t y − ψ z t x © e λ|z| + C λ, T sup {x:|x−z|≥2} sup y: |x− y|≤N −12 n ψ z t y − ψ z t x 1 2 o e −λ|x−z| e λ|x| . 638 Next use that ψ a t b = ψ b t a to get as a further upper bound C λ sup {x:|x−z|2} sup y: |x− y|≤N −12 ¦ ψ y t z − ψ x t z © e λ|z| + C λ, T sup {x:|x−z|≥2} sup y: |x− y|≤N −12 n ψ y t z − ψ x t z 1 2 o e λ|z| 45 ≤ Cλ, T e λ zN −14 t −1 , where we used N −34 t ≤ T . This finishes the proof of g and it also finishes the proof of the lemma. The following corollary uses the results of Lemma 3.4 to obtain estimates that we shall need later. Corollary 3.5. There exists N ∞ such that for N ≥ N , 0 ≤ δ ≤ u ≤ t ≤ T and y, z ∈ N −1 Z , λ ≥ 0, we have a R t u kψ z t −s k λ ds ≤ Cλ, T t − u 1 3 e λ z and R t kψ z t −s k 2 λ ds ≤ Cλ, T N 1 4 e 2 λ z. b For | y − z| ≤ 1 and δ ≤ t − N −34 we further have sup ≤s≤δ kψ z t −s − ψ y t −s k λ ≤ Cλ, T e λ z ¦ |z − y| 1 2 t − δ −1 + N −12 t − δ −32 © . c We also have R t δ kψ z t −s − ψ y t −s k λ ds ≤ Cλ, T e λ z + e λ y t − δ 1 3 . d For N −34 ≤ u − δ we have sup ≤s≤δ kψ z t −s − ψ z u −s k λ ≤ Cλ, T e λ z ¦ t − u 1 2 u − δ −32 + N −12 u − δ −32 © . e Finally, we have R u δ kψ z t −s − ψ z u −s k λ ds ≤ Cλ, T e λ zu − δ 1 3 . Proof. The proof is a combination of the results of Lemma 3.4. a We have for n = 1, 2 and 0 ≤ u ≤ t by Lemma 3.4c Z t u ψ z t −s n λ ds ≤ Cλ, T Z t u N n 2 ∧ t − s −2n3 ds e n λ z. For n = 1 further bound the integrand by t − s −23 , for n = 2 and u = 0 use the above integrand to obtain the claim. b follows from Lemma 3.4e. c We further have by Lemma 3.4c Z t δ kψ z t −s − ψ y t −s k λ ds ≤ Cλ, T e λ z + e λ y Z t δ t − s −23 ds. 639 d follows from Lemma 3.4f. e Using Lemma 3.4c once more, we get Z u δ kψ z t −s − ψ z u −s k λ ds ≤ Cλ, T e λ z Z u δ t − s −23 + u − s −23 ds, which concludes the proof after some basic calculations. We shall need the following technical lemma. Lemma 3.6. For f : N −1 Z → [0, ∞ with 〈 f , 1〉 ∞, λ ∈ R we have a 〈ν s , ψ z t −s 〉 = 〈Aξ s , ¯ ψ z t −s 〉, b 〈ν t , f 〉 − 〈Aξ t , f 〉 ≤ Cλ k D f , N −12 k λ . Proof. a follows easily from 〈ν s , ψ z t −s 〉 = 〈ξ s , ψ z t −s 〉 = 1 N X x ξ s x ψ x t −s z 40 = 1 N X x ξ s x〈ψ x , ¯ ψ z t −s 〉 = 1 N X y X x 1 2cN N 1 2 1 y ∼ xξ s x ¯ ψ z t −s y = 1 N X y A ξ s y ¯ ψ z t −s y = 〈Aξ s , ¯ ψ z t −s 〉. Part b follows as in the proof of Lemma 5b in [13]. Observe in particular that 〈ν t , e −λ 〉 ≤ Cλ as will be shown before and in 48 below. Taken all together this finishes the proof. Next use the test function φ s ≡ ψ x t −s for s ≤ t in the semimartingale decomposition 37 and observe that φ satisfies 25 and ∂ s φ s = −∆φ s by 38. Here the initial condition is chosen so that 〈ν t , φ t 〉 = 〈ν t , ψ x 〉 = Aξ t x. The test function chosen in [13] at the beginning of page 526, namely φ s = e θ c t−s ψ x t −s was chosen so that the drift term 〈ν s , θ c φ s 〉ds of the semimartingale decomposition 2.9 in [13] would cancel out with the drift term 〈ν s , ∂ s φ s 〉ds. As we have multiple coefficients, this is not possible. Also, it turned out that the calculations become easier once we consider time differences in Subsection 3.6 to follow. With the above choice we obtain, for a fixed value of t, an approximate Green’s function represen- tation for A ξ t , namely A ξ t x =〈ν , ψ x t 〉 + E 1 t € ψ x t −· Š + M t € ψ x t −· Š + E 3 t ψ x t −· 46 + X k=0,1 1 − 2k X m ≥2,i, j=0,1 q k,m,N i j Z t 〈 € F j ◦ Aξ s − Š × F 1 −k ◦ Aξ s − m −1 € F i ◦ p N ∗ ξ s − Š 1 ξ s − · = k , ψ x t −s 〉ds. 640 The following lemma is stated analogously to Lemma 4 of [13]. Parts a and c will follow easily in our setup and so the only significant statement will be part b. Lemma 3.7. Suppose that the initial conditions satisfy A ξ → u in C as N → ∞. Then for T ≥ 0, p ≥ 2, λ 0, a E ” sup t ≤T 〈ν t , e −λ 〉 p — ≤ Cλ, p. b We further have E • E 1 t € ψ z t −· Š p ∨ E 3 t € ψ z t −· Š p ˜ ≤ Cλ, p, T 1 + C p 2 Q N −p16 e λp z for all t ≤ T and N big enough, where we set C Q ≡ sup N ≥N X m ≥2,i, j,k=0,1 q k,m,N i j . 47 c Finally, kE Aξ t k −λp ≤ 1 for all t ≤ T . Proof. First observe that we have ξ t ∈ {0, 1} Z N and 0 ≤ Aξ t ≤ 1. Therefore, parts a and c follow immediately. Indeed, for a observe that ≤ 〈ν t , e −λ 〉 = 〈ξ t , e −λ|·| 〉 ≤ 2 N ∞ X j=0 e −λ jN = 2 N 1 1 − e −λN N →∞ → 2 λ . Note in particular that we showed that 〈e −λ , 1 〉 ≤ C λ for all λ 0, N = N λ big enough, 48 which will prove useful later. For c we further have kE Aξ t k −λp = sup x E Aξ t x e −λp|x| ≤ sup x e −λp|x| ≤ 1. It only remains to show that b holds. b First observe that C Q ∞ by Hypothesis 2.5. We shall apply a Burkholder-Davis-Gundy inequality in the form E – sup s ≤t |X s | p ™ ≤ CpE – 〈X 〉 p 2 t + sup s ≤t |X s − X s − | p ™ 49 for a cadlag martingale X with X = 0 this inequality may be derived from its discrete time version, see Burkholder [3], Theorem 21.1. To get an upper bound on the second term of the r.h.s. of 49 for the martingales we consider, observe that the largest possible jumps of the martingales E 1 t ψ z t −· respectively E 3 t ψ z t −· are bounded a.s. by C N −12 . Indeed, E 1 t ψ z t −· = 1 N X x X y ∼x Z t ξ s − y € ψ z t −s x − ψ z t −s y Š d P s x; y − d〈Px; y〉 s 641 and thus, using Lemma 3.4a, the maximal jump size is bounded by 1 N 2 sup t ≤T kψ z t k ≤ C N 1 2 50 the maximal number of jumps at a fixed time is 1. The bound on the maximal jump size of E 3 t ψ z t −· follows analogously. Now choose t ≤ T . We shall start with E 3 t ψ z t −· . By 49, 50 and 36 we have E • E 3 t ψ z t −· p ˜ ≤ Cp    X m ≥2,i, j,k=0,1 q k,m,N i j 1 N Z t ψ z t −s 2 λ 〈e −2λ , 1 〉ds    p 2 + CpN −p2 48 ≤ Cλ, pC p 2 Q N −p2    ‚Z t ψ z t −s 2 λ ds Œ p 2 + 1    . By Corollary 3.5a this is bounded from above by C λ, p, T C p 2 Q N −p2 ¦ N p 8 e λp z + 1 © = C λ, p, T C p 2 Q N −3p8 e λp z. It remains to investigate E 1 t ψ z t −· . Here 49, 50, 30 and 31 yield E • E 1 t ψ z t −· p ˜ ≤ Cp Z t ” kψ z t −s k 〈ψ z t −s , 1 〉 — ∧   D ψ z t −s , 1 p N 2 λ 〈1, e −2λ 〉   ds p 2 + CpN −p2 . This in turn is bounded from above by Cp Z t ” CT t − s −23 — ∧   D ψ z t −s , 1 p N 2 λ C λ   ds p 2 + CpN −p2 , where we used Lemma 3.4a, c and 48. To apply Lemma 3.4g to the second part of the integrand, we need to ensure that N −34 ≤ t − s. As N −34 ≤ N −38 we get as a further upper bound Cp    Z N −38 CT s −23 ds + Z t N −38 ∧t € C λ, T e λ zN −14 s −1 Š 2 C λds    p 2 + CpN −p2 ≤ Cλ, p, T e λp z ¨  € N −38 Š 1 3 + N −12 € N −38 Š −1 ‹ p 2 + N −p2 « ≤ Cλ, p, T N −p16 e λp z. This finishes the proof. 642

3.6 Tightness

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52