Characterizing limit points getdoc28f9. 373KB Jun 04 2011 12:04:11 AM

ON −1 between the time-grid points in N −2 N . We obtain that P ‚ sup t ≤T k ˜ A ξ N t − ˆ A ξ N t k −λ ≥ 7N −14 Œ ≤ P € ∃t ∈ [0, T ] ∩ N −2 N , s ∈ [0, T ], |s − t| ≤ N −2 such that kAξ N t − Aξ N s k −λ + 〈ν N , ψ · t − ψ · s 〉 −λ ≥ 7N −14 Š ≤ P € ∃t ∈ [0, T ] ∩ N −2 N , s ∈ [0, T ], |s − t| ≤ N −2 such that kAξ N t − Aξ N s k −λ ≥ 6N −14 Š for N big enough. Next note that the value of A ξ N t x changes only at jump times of P t x; y or Q m,i, j.k t x; y 1 , . . . , y m ; z, i, j, k = 0, 1, m ≥ 2 for some y ∼ x respectively for some y 1 , . . . , y m ∼ x and arbitrary z ∈ N −1 Z and that each jump of A ξ N t is by definition of A ξ N t bounded by N −12 . Then, writing P a for a Poisson variable with mean a, we get as a further bound on the above X l ∈Z P € ∃z ∈ N −1 Z ∩ l, l + 1], ∃t ∈ [0, T ] ∩ N −2 N , ∃s ∈ [t, t + N −2 ] with § A ξ N t z − Aξ N s z ∧ Aξ N t+N −2 z − Aξ N s z ª ≥ N −14 e λ|l|−1 ‹ ≤ X l ∈Z N N 2 T P   C N −12   X y ∼0 P N −2 0; y + X i, j,k=0,1,m ≥2 X y 1 ,..., y m ∼0 X u Q m,i, j,k N −2 0; y 1 , . . . , y m ; u    ≥ N −14 e λ|l|−1    ≤ X l ∈Z CT N 3 P € C N −12 P € N −2 €€ N − θ N Š + C Q ŠŠ ≥ N −14 e λ|l|−1 Š ≤ X l ∈Z CT N 3 P € P € N −2 € N + C Q ŠŠŠ p ≥ C N p 4 e λp|l|−1 for some p 0. Now apply Chebyshev’s inequality. Choose p 0 such that 3 − p4 0. Then the resulting sum is finite and goes to zero for N → ∞. b The proof of part b follows as the proof of Lemma 7b of [13].

3.7 Characterizing limit points

To conclude the proof of Theorem 2.10 we can proceed as in Section 4 in [13], except for the proof of weak uniqueness of 21. We shall give a short overview in what follows. The interested reader is referred to [13] for complete explanations. In short, Lemma 3.6b implies for all φ ∈ C c that sup t 〈ν N t , φ〉 − 〈Aξ N t , φ〉 ≤ Cλ k Dφ, N −12 k λ N →∞ → 0. 59 The C-tightness of A ξ N t : t ≥ 0 in C 1 follows from the results of Subsection 3.6. 649 This in turn implies the C-tightness of ν N t : t ≥ 0 as cadlag Radon measure valued processes with the vague topology. Indeed, let ϕ k , k ∈ N be a sequence of smooth functions from R to [0, 1] such that ϕ k x is 1 for |x| ≤ k and 0 for |x| ≥ k + 1. Then a diagonalization argument shows that C-tightness of ν N t : t ≥ 0 as cadlag Radon measure valued processes with the vague topology holds if and only if C-tightness of ϕ k d ν N t : t ≥ 0 as cadlag M F [−k + 1, k + 1]-valued processes with the weak topology holds. Here, M F [−k + 1, k + 1] denotes the space of finite measures on [ −k + 1, k + 1]. Now use Theorem II.4.1 in Perkins [15] also see the Remark following it and the proof of sufficiency on pages 157-159 to obtain C-tightness of ϕ k d ν N t : t ≥ 0 in D M F [−k + 1, k + 1]. The compact containment condition i in [15] is obvious. The second condition ii in [15] follows from 59 and the C-tightness of A ξ N t : t ≥ 0 in C 1 together with Lemma 3.7a. Observe in particular, that 59 implies the existence of a subsequence A ξ N k t , ν N k t that converges to u t , ν t . Hence, we can define variables with the same distributions on a different probability space such that with probability one, for all T ∞, λ 0, φ ∈ C c , sup t ≤T Aξ N k t − u t −λ → 0 as k → ∞, sup t ≤T 〈φ, ν N k t 〉 − 〈φ, ν t 〉 → 0 as k → ∞, where we used 0 ≤ Aξ N k t ≤ 1 and thus 0 ≤ u t x ≤ 1 a.s. for the first limit. We obtain in particular ν t d x = u t xd x for all t ≥ 0. It remains to investigate u t in the special case with no short-range competition, i.e. where q k,m,N 0 j = q k,m,N 1 j , j = 0, 1. Take φ t ≡ φ ∈ C 3 c in 37. We get M N t φ =〈ν N t , φ〉 − 〈ν N , φ〉 − Z t 〈ν N s − , ∆ φ 〉ds − E 1 t φ 60 − X k=0,1 1 − 2k X m ≥2, j=0,1 q k,m,N 0 j Z t 〈 € F j ◦ A € ξ N s − ŠŠ × € F 1 −k ◦ A € ξ N s − ŠŠ m −1 1 € ξ N s − · = k Š , φ〉ds − E 3 t φ. From 30 and 36 and the Burkholder-Davis-Gundy inequality 49 we obtain that the error terms converge to zero for all 0 ≤ t ≤ T almost surely. Taylor’s theorem further shows that replace N k by N for notational ease ∆ φ x N = N − θ N cN N p N 2 X y ∼x N φ y − φx N → ∆ φ 6 x as x N → x and N → ∞ on the support of φ. Using this in 60 we can show that M N t φ converges to a continuous martingale M t φ satisfying M t φ = Z φxu t xd x − Z φxu xd x − Z t Z ∆ φx 6 u s xd x ds 61 − X k=0,1 1 − 2k X m ≥2, j=0,1 q k,m 0 j Z t Z F j u s x F 1 −k u s x m −1 F k u s x φxd x ds. 650 To exchange the limit in N → ∞ with the infinite sum we used [16], Proposition 11.18 together with Hypothesis 2.7. Recall in particular, that 0 ≤ F l u s x ≤ 1 for l = 0, 1. To show that M t φ is indeed a martingale we used in particular 33 to see that 〈M N φ〉 t ≤ Cλt kφ k 2 λ 〈1, e −2λ 〉 is uniformly bounded. Therefore, M N t φ : N ≥ N and all its moments are uniformly integrable, using the Burkholder-Davis-Gundy inequality of the form 49 once more. We can further calculate its quadratic variation by making use of 32 for N → ∞ together with the uniform integrability of M N t φ 2 : N ≥ N . Use our results for φ ∈ C 3 c , note that C 3 c is dense in C 2 c with respect to the norm k f k≡k f k ∞ + k f ′ k ∞ + k ∆ f k ∞ , and use 61 to see that u t solves the martingale problem associated with the SPDE 21. It is now straightforward to show that, with respect to some white noise, u t is actually a solution to 21 see Rogers and Williams [17], V.20 for the similar argument in the case of SDEs.

3.8 Uniqueness in law

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52