The Wheel Graph getdocf350. 325KB Jun 04 2011 12:05:11 AM

4.1 The Wheel Graph

The wheel graph, defined in Section 1, is an important class of planar graphs both in theory and in applications. It has nice properties such as self-duality, see [ST50; Tut50]. In [LZ09], the wheel graph was used as an example to study the expected length of MST for graphs with general i.i.d. edge lengths. In this paper, we consider the wheel graphs with rims and spokes following edge distributions F r and F s respectively. The graph structure of the wheel graph enables us to compute its multivariate Tutte polynomial with two types of edges explicitly. By applying the general formula 4, we obtain a representation of EL M S T W n . In Section 4.1.2, we substitute U0, 1 and exp1 distributions as special cases of F r and F s and compute the exact values and asymptotical values of the expected lengths of MSTs for the wheel graph in these cases.

4.1.1 The Multivariate Tutte Polynomial of Wheel Graphs

For a wheel graph W n , we denote the edge lengths on rims and spokes as v r , v s respectively. Theorem 4 The Multivariate Tutte Poly for W n . For a wheel graph W n , the multivariate Tutte Poly- nomial is ZW n ; q, v = qq − 2v n r + qα n + β n , 14 where v = {v r , v s }, and α, β = 1 2 2v r + v r v s + v s + q ± p v 2 r v 2 s + 2v r v 2 s + v 2 s + 4v r v s − 2qv r v s + 2qv s + q 2 . Proof: The theorem is proved by considering the recursive relations among the multivariate Tutte polynomials of W n and its subgraphs X n , Y n , Z n . This is similar to the idea in deriving the standard Tutte polynomial for wheel graphs in [LZ09], except that there are now two types of edges in each graph, see Figure 3. For short, we denote ZG as the multivariate Tutte polynomial ZG; q, v of v v n v 1 1 1 00 11 00 00 11 11 1 00 00 11 11 1 1 00 00 11 11 00 00 11 11 00000 00000 00000 00000 00000 00000 00000 00000 11111 11111 11111 11111 11111 11111 11111 11111 000000 111111 000000 111111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 2 v 3 v v n−1 v v n−1 v 1 v n 2 v 1 1 00 11 00 00 11 11 1 00 00 11 11 1 1 00 00 11 11 00 00 11 11 00000 00000 00000 00000 00000 00000 00000 00000 11111 11111 11111 11111 11111 11111 11111 11111 000000 111111 000000 111111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 v 3 v v n−1 v 1 1 1 00 11 00 00 11 11 1 00 00 11 11 1 1 00 00 11 11 00000 00000 00000 00000 00000 00000 00000 00000 11111 11111 11111 11111 11111 11111 11111 11111 000000 111111 000000 111111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 2 v 3 v v v n−1 1 1 00 11 00 00 11 11 1 00 00 11 11 1 1 00000 00000 00000 00000 00000 00000 00000 00000 11111 11111 11111 11111 11111 11111 11111 11111 000000 111111 000000 111111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 2 v 3 v W n X n Y n Z n Figure 3: W n , X n , Y n , and Z n with Two Types of Edges graph G. From the deletion-contraction identity 12, we obtain the following recursive relations: ZW n+1 = ZX n+1 + v r v s 1 + v s ZY n + v 2 r v s 1 + v s ZZ n + v r ZW n , ZX n+1 = q + v r + v s ZX n + v r v s 1 + v s ZY n , ZY n+1 = ZX n + v r 1 + v s ZY n , ZZ n+1 = 1 + v s ZY n + v r 1 + v s ZZ n , 119 with initial conditions: ZW 2 = ZX 2 + v r 1 + v r q + v s 2 + q − 1v 2 s , ZX 2 = q + v s 2 q + v r + q − 1v r v 2 s , ZY 2 = q + v s q + v r + q − 1v r v s , ZZ 2 = 1 + v r 1 + v s q. Then generating functions are formed as F t = X n≥2 ZX n t n , Gt = X n≥2 ZY n t n , Pt = X n≥2 ZZ n t n , Qt = X n≥2 ZW n t n . By solving these generating functions, we obtain Qt = −qq + qv r + v s + v r v s t − q 2 + qq − 2 1 − t v r + q 1 − αt + q 1 − β t , where α, β = 1 2 2v r + v r v s + v s + q ± Æ v 2 r v 2 s + 2v r v 2 s + v 2 s + 4v r v s − 2qv r v s + 2qv s + q 2 . Since the multivariate Tutte polynomial of W n is the coefficient of the term t n in the series expansion of Qt, ZW n ; q, v = qq − 2v n r + qα n + β n , which finishes the proof of Theorem 4. ƒ 4.1.2 The Expected Lengths of MSTs of Wheel Graphs For a wheel graph W n , we assume the edge lengths on rims and spokes ξ r and ξ s follow distributions F r and F s respectively. In addition, let b r = min{t : F r t = 1} and b s = min{t : F s t = 1}. Note that it is possible for both b r and b s to be infinity. If this is the case, we use the convention that I b r b s = 0. The exact values of the expected lengths of MSTs of the wheel graph are then given in the following proposition. Proposition 1. For a wheel graph W n , we have E L M S T W n = Z minb r ,b s F r t n 1 − F s t n + n1 − F r t1 − F s t dt + Z minb r ,b s nF r tF s t1 − F r t1 − F s t 1 − F r t + F r tF s t F r t n−1 1 − F s t n−1 − 1 dt + Ib r b s Z b s b r 1 − F s t n dt. 120 From Proposition 1, exact and asymptotic values of EL M S T W n can be computed explicitly when F r and F s are specialized to specific distributions. In these cases, we use special notations for the expected lengths of MSTs as the following: EL ue M S T W n , if F r ∼ U0, 1 and F s ∼ exp1; and E L eu M S T W n , if F r ∼ exp1 and F s ∼ U0, 1. It is easy to see that for both of these cases, the values of expected length of MST should be between EL u M S T W n and EL e M S T W n . From Proposition 1, we have Corollary 1. For wheel graphs W n , E L ue M S T W n = e −n n + ne −1 + Z 1 t n e −nt + n t1 − te −t 1 − e −t 1 − t e −t t e −t n−1 − 1 dt, 15 and E L eu M S T W n = n Z 1 t1 − te −t 1 − e −t e −t + t − t e −t 1 − t n−1 1 − e −t n−1 − 1 dt + ne −1 + Z 1 1 − t n 1 − e −t n dt. 16 Asymptotically, lim n→∞ 1 n E L ue M S T W n = Z 1 1 − t 2 e t − t dt ≈ 0.31637, and lim n→∞ 1 n E L eu M S T W n = Z 1 1 − te −t 1 − t + t e t dt ≈ 0.32490. Comparing this with the corollary in [LZ09], we see that both EL ue M S T W n and EL eu M S T W n go to infinity with a rate between the rate of EL u M S T W n and EL e M S T W n as expected. In addition, Corollary 1 shows that for large n, E L eu M S T W n EL ue M S T W n . Somewhat surprising, one can show that this inequality holds for all n ≥ 4, by comparing formula 15 with 16, proof is not given here. Intuitively, this may be true because the wheel graph has more spanning trees containing more rims than spokes. Since the random variables distributed U0, 1 are more likely to take small values, more edges with U0, 1 distributed lengths available will give a shorter minimum spanning tree. However, a rigorous proof without using Proposition 1 can be difficult. In the following proof, we let E r and E s denote the set of rims and spokes respectively. Proof of Proposition 1: This proposition is a direct application of Theorem 1. The key is to find the multivariate Tutte polynomial of graph W ′ n t = V, E ′ t for each t. Since W ′ n t is obtained by contracting all the edges e such that F e t = 1, it depends on the size of b r = min{t : F r t = 1} and b s = min{t : F s t = 1}. In the case that b r 6= b s , we have to examine the value of Z q W ′ n t; 1, vt in the following intervals of t. 121 1. If b r b s , then for every t ∈ b r , b s , all the rims have to be contracted and the edge set E ′ t contains only spokes. That is, W ′ n t = W n {e ∈ E r }, which is a graph with n parallel edges spokes joining the same pair of vertices. Then in the multivariate Tutte polynomial of W ′ n t, we have vt = {v s t}. By formula 13 and Definition 4, ZW ′ n t; q, vt = qq + 1 + v s t n − 1, Taking derivative with respect to q and evaluating at q = 1, Z q W ′ n t; 1, vt = 1 + v s t n + 1. 17 2. If b r b s , then for any t ∈ b s , b r , all the spokes have to be contracted and the edge set E ′ t contains only rims. That is, W ′ n t = W n {e ∈ E s }, which is a graph with one vertex and n loops rims. Then in the multivariate Tutte polynomial of W ′ n

t, we have vt = {v

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52