v, we obtain v v λ v v v vn → 0. Since the matrix Aq, v is primitive A v v v v λ v vZΓ0, k; v v λ v

Therefore, by taking derivative on both sides of equation 31 with respect to q, Z q n; q, v = nλ n−1 q, vξq, vλ q q, v + λ n

q, vξ

q

q, v

+nA n−1 q, vrq, vA q q, v + A n

q, vr

q

q, v.

We are only interested in the above quantity at q = 1, at which ξ1, v = Z0; 1, v and r1, v = 0. This shows that, by dividing nλ n

1, v, we obtain

Z q n; 1, v nλ n

1, v

= λ q 1, v λ1, v Z0; 1, v + ξ q

1, v

n + A1, v λ1, v n r q

1, v

n . As n → ∞, obviously ξ q 1, vn → 0. Since the matrix Aq, v is primitive A1, v λ1, v n → D1, v, as n → ∞, for some matrix D1, v, according to Theorem 8.5.1 in [HJ86]. Hence A1, v λ1, v n r q

1, v

n → 0, as n → ∞. Consequently, Z q n; 1, v nλ n

1, v

→ λ q 1, v λ1, v Z0; 1, v, as n → ∞. Since Z q n; 1, v is a vector of Z q Γn, k; 1, v for all Γ ∈ G , we have for any noncrossing partition Γ of C k , Z q Γn, k; 1, v nλ n 1, vZΓ0, k; 1, v → λ q 1, v λ1, v . as n → ∞. If Γ is the partition consisting of k isolated vertices, then Γn, k is the cylinder graph P n × C k and Γ0, k is the cycle C k with only type 2 edges. Therefore, by Lemma 2 and the fact that ZC k ; 1, v = 1 + v 2 k , Lemma 3 is proved. ƒ Now by dominated convergence theorem, Theorem 3 follows easily from the next lemma, details are omitted. Lemma 4. Z q P n × C k ; 1, v n1 + v 2 n+1k 1 + v 1 nk ≤ n + 1k nk . Proof of Lemma 4: Let the edge subset A = A 1 ∪ A 2 , where the set A 1 , A 2 consists of type 1 and type 2 edges in A respectively. By the definition of the multivariate Tutte polynomial, ZG nk ; q, v = X A⊆E q kA v |A 1 | 1 v |A|−|A 1 | 2 , where 0 ≤ |A 1 | ≤ nk and 0 ≤ |A 2 | ≤ n + 1k. As such, by taking derivative on both sides of the above, Z q G nk ; q, v = X A⊆E kAq kA−1 v |A 1 | 1 v |A|−|A 1 | 2 , 130 then Z q G nk ; 1, v = |E| X m=0 X |A|=m kAv |A 1 | 1 v m−|A 1 | 2 . 32 Since the number of components in a graph is bounded by the number of vertices the graph has, for the cylinder graph P n × C k , 1 ≤ kA ≤ n + 1k. Then from equation 32 and the fact that |E| = 2n + 1k, Z q P n × C k ; 1, v ≤ n + 1k 2n+1k X m=0 X |A|=m v |A 1 | 1 v m−|A 1 | 2 = n + 1k 2n+1k X m=0 nk X i=0    X |A 1 |=i,|A|=m 1    v i 1 v m−i 2 = n + 1k 2n+1k X m=0 nk X i=0 nk i n + 1k m − i v i 1 v m−i 2 = n + 1k1 + v 1 nk 1 + v 2 n+1k , which completes the proof of Lemma 4. ƒ Theorem 3 shows that to calculate the asymptotic value of EL M S T G nk n for a specific value of k, one only needs to find λ q

1, v. The calculation of λ

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52