v ≥ 0. Proof: To show the transfer matrix Aq, v given in 25 is primitive, it is enough to show it is vZ0; v = A

Table 1: Exact Values of P n × C 2 for Different Edge Distributions n n −1 E L e n n −1 E L eu n n −1 E L ue n n −1 E L u n 1 1.35000 1.13134 1.06472 0.94286 2 1.11349 0.96567 0.85633 0.77958 3 1.03495 0.91046 0.78916 0.72525 4 0.99568 0.88286 0.75576 0.69809 5 0.97212 0.86630 0.73573 0.68179 6 0.95642 0.85526 0.72238 0.67093 7 0.94520 0.84737 0.71285 0.66317 8 0.93679 0.84145 0.70570 0.65735 9 0.93025 0.83685 0.70013 0.65282 10 0.92501 0.83317 0.69568 0.64920 k = 2 Table 2: Exact Values of P n × C 3 for Different Edge Distributions n n −1 E L e n n −1 E L eu n n −1 E L ue n n −1 E L u n 1 2.17421 1.71031 1.82033 1.56310 2 1.64128 1.33985 1.35248 1.20091 3 1.46555 1.21652 1.20432 1.08083 4 1.37779 1.15487 1.13103 1.02083 5 1.32515 1.11787 1.08715 0.98483 6 1.29005 1.09321 1.05790 0.96084 7 1.26499 1.07559 1.03702 0.94370 8 1.24619 1.06238 1.02136 0.93084 9 1.23156 1.05210 1.00917 0.92084 10 1.21986 1.04388 0.99943 0.91284 k = 3

4.2.3 Asymptotic Values of the Expected Lengths of MSTs of Cylinder Graphs

Tables 1 and 2 show that the values of EL M S T G n,k n are decreasing for all the four cases as n grows larger. Hutson and Lewis [HL07] showed that EL u M S T G n,k n converges to a number that can be represented by the dominant eigenvalue of their transfer matrix. For the cylinder graph with mixed edge weight distributions, we prove a similar asymptotic result in Theorem 3. Recall that Perron-Frobenius theorem says a nonnegative primitive matrix has a unique eigenvalue of maximum modulus, which is called the Perron-Frobenius eigenvalue, see Th2.1 in [Var62]. To prove Theorem 3, we first show three basic lemmas. Lemma 2. For k ≥ 2, the transfer matrix Aq, v is primitive, i.e., there exists k such that A k

q, v ≥ 0.

128 In particular, at q = 1, the Perron-Frobenius eigenvalue of A1, v is λ1, v = 1 + v 1 k 1 + v 2 k , with the corresponding eigenvector as Z0; 1,

v. Proof: To show the transfer matrix Aq, v given in 25 is primitive, it is enough to show it is

irreducible and has all positive entries on the diagonal, see Theorem 8.5.5 in [HJ86]. Both of these two properties are easy to verify, because it is enough to show these are true for Aq, v at q = v 1 = v 2 = 1. In this case, our transfer matrix A1, v is reduced to the transfer matrix in [HL07] at x − 1 y − 1 = 1, which was shown to be irreducible and have positive diagonal entries. In addition, since Aq, v is clearly nonnegative, by Perron-Frobenius theorem, it has the Perron- Frobenius eigenvalue, which we denote as λq, v. Since graph Γ0, k = V, {E 1 , E 2 } has edge count |E 1 | = 0, |E 2 | = k and graph Γ1, k = V ′ , {E ′ 1 , E ′ 2 } has |E ′ 1 | = k, |E ′ 2 | = 2k, from the simplification formula 8 of the multivariate Tutte polynomial at q = 1, we have ZΓ0, k; 1, v = 1 + v 2 k , and ZΓ1, k; 1, v = 1 + v 2 2k 1 + v 1 k = 1 + v 1 k 1 + v 2 k ZΓ0, k; 1, v. Moreover, Z1; 1, v is a vector of ZΓ1, k; 1, v for all noncrossing partitions Γ ∈ G , thus by Theorem 5, Z1; 1, v = Aq, vZ0; 1, v = 1 + v 1 k 1 + v 2 k Z0; 1, v. Therefore, Z0; 1, v is a positive eigenvector of the nonnegative matrix A1, v, with the corre- sponding positive eigenvalue 1 + v 1 k 1 + v 2 k . Thus by Theorem 8.1.30 in [HJ86], at q = 1, the eigenvalue of maximum modulus of Aq, v, which is the Perron-Frobenius eigenvalue, is λ1, v = 1 + v 1 k 1 + v 2 k . This completes the proof of Lemma 2. ƒ Next we show that Lemma 3. For v = {v 1 , v 2 }, if we let Z q P n × C k ; 1, v be the derivative of the multivariate Tutte polynomial of the cylinder graph P n × C k with respect to q and evaluated at q = 1, then Z q P n × C k ; 1, v n1 + v 2 n+1k 1 + v 1 nk → λ q 1, v λ1, v , as n → ∞. Proof: The proof of this lemma goes along the similar line as the proof of Theorem 7.1 in [HL07]. Adopt the notations there, we let ξ q, v be the Perron-Frobenius eigenvector. Choose a scaling of ξ q, v such that ξ1, v = Z0; 1, v. If we let rq, v = Z0; q, v − ξq, v, then Zn; q, v = A n q, vZ0; q, v = A n q, vξq, v + rq, v

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52