Step 4 getdoce738. 340KB Jun 04 2011 12:05:07 AM

The upper bound is obtained by splitting the r.h.s. of 3.14 into R N + D N := P T 3 N 2 r=1 K N t + r · u N T 3 N − r u N N − u · P ∞ j=1 K N t + j + P T 3 N 2 r=1 K N t + T 3 N − r · u N r u N N − u · P ∞ j=1 K N t + j . 3.18 The term R N can be bounded from above by a constant by simply applying the upper bound in 2.21 to u N T 3 N − r for all r ∈ {1, . . . , T 3 N 2} and the lower bound to u N N − u. To bound D N from above, we use the upper bound in 2.15, which, together with the fact that gT N + φδ, T N ∼ m δ T 3 N , shows that there exists c 0 such that for N large enough and r ∈ {1, . . . , T 3 N 2} we have K N t + T 3 N − r ≤ c T 3 N e −gT N +φδ,T N t . 3.19 Notice also that by 2.16 we can assert that ∞ X j=1 K N t + j ≥ c 3 e −gT N +φδ,T N t . 3.20 Finally, 3.19, 3.20 and the fact that u N N − u ≥ c 1 T 3 N for all u ∈ {0, . . . , V N } by 2.21 allow to write D N ≤ c P T 3 N 2 r=1 u N r c 1 c 3 . 3.21 By applying the upper bound in 2.21, we can check easily that P T 3 N 2 r=1 u N r is bounded from above uniformly in N ≥ 1 by a constant. This completes the proof of the step.

3.4 Step 4

In this step we complete the proof of Theorem 1.1 1, by proving equation 1.5, that we rewrite for convenience: there exist 0 c 1 c 2 ∞ such that for all a b ∈ R and for large N ∈ 2N for simplicity c 1 Pa Z ≤ b ≤ P T N N , δ ‚ a Y T N L N p v δ k N ≤ b Œ ≤ c 2 Pa Z ≤ b . 3.22 We recall 2.4 and we start summing over the location µ N := τ T N L N ,TN of the last point in τ T N before N : P T N N , δ ‚ a Y T N L N ,TN p v δ k N ≤ b Œ = N X ℓ=0 P T N N , δ ‚ a Y T N L N ,TN p v δ k N ≤ b µ N = N − ℓ Œ · P T N N , δ µ N = N − ℓ . 3.23 Of course, only the terms with ℓ even are non-zero. We want to show that the sum in the r.h.s. of 3.23 can be restricted to ℓ ∈ {0, . . . , V N }. To that aim, we need to prove that P N ℓ=V N P T N N , δ µ N = N − ℓ tends to 0 as N → ∞. We start by displaying a lower bound on the partition function Z T N N , δ . 2052 Lemma 3.1. There exists a constant c 0 such that for N large enough Z T N N , δ ≥ c T N e φδ,T N N . 3.24 Proof. Summing over the location of µ N and using the Markov property, together with 2.11, we have Z T N N , δ = E h e H TN N , δ S i = N X r=0 E h e H TN N , δ S 1 {µ N =r} i = N X r=0 E h e H TN r, δ S 1 {r∈τ TN } i P τ T N 1 N − r = N X r=0 e φδ,T N r P δ,T N r ∈ τ Pτ T N 1 N − r . 3.25 From 3.25 and the lower bounds in 2.14 and 2.21, we obtain for N large enough Z T N N , δ ≥ const. e φδ,T N N N X r=0 e −[φδ,T N +gT N ]N −r min { p N − r + 1, T N } min{r + 1 3 2 , T 3 N } . 3.26 At this stage, we recall that φδ, T + gT = m δ T 3 + o1T 3 as T → ∞, with m δ 0, by 2.18. Since T 3 N ≪ N, we can restrict the sum in 3.26 to r ∈ {N − T 3 N , . . . , N − T 2 N }, for large N, obtaining Z T N N , δ ≥ const. e φδ,T N N T 4 N N −T 2 N X r=N −T 3 N e − mδ T 3 N +o 1 T 3 N N −r ≥ const. ′ e φδ,T N N T N , 3.27 because the geometric sum gives a contribution of order T 3 N . We can now bound from above using the Markov property and 2.11 N −V N X l=0 P T N N , δ µ N = ℓ = N −V N X ℓ=0 E exp H T N ℓ,δ S 1 {ℓ∈τ} · P τ 1 N − ℓ Z T N N , δ = N −V N X ℓ=0 P δ,T N ℓ ∈ τ e φδ,T N ℓ P τ 1 N − ℓ Z T N N , δ ≤ const. N −V N X ℓ=0 T N min {ℓ + 1 3 2 , T 3 N } · e −[φδ,T N +gT N ]N −ℓ min { p N − ℓ, T N } , 3.28 where we have used Lemma 3.1 and the upper bounds in 2.14 and 2.21. For notational conve- nience we set dT N = φδ, T N + gT N . Then, the estimate 2.18 and the fact that V N ≫ T 3 N imply that N −V N X ℓ=0 P T N n, δ µ N = ℓ ≤ const. e −dT N V N N −V N X ℓ=0 e −dT N N −V N −ℓ min {ℓ + 1 3 2 , T 3 N } ≤ const. ′ e −dT N V N ‚ ∞ X ℓ=0 1 l + 1 3 2 + ∞ X ℓ=0 e −dT N ℓ T 3 N Œ . 3.29 2053 Since dT N ∼ m δ T 3 N , with m δ 0, and V N ≫ T 3 N we obtain that the l.h.s. of 3.29 tends to 0 as N → ∞. Thus, we can write P T N N , δ ‚ a Y T N L N ,TN p v δ k N ≤ b Œ = V N X ℓ=0 P T N N , δ ‚ a Y T N L N ,TN p v δ k N ≤ b µ N = N − ℓ Œ P T N N , δ µ N = N − ℓ + ǫ N a, b , 3.30 where ǫ N a, b tends to 0 as N → ∞, uniformly over a, b ∈ R. At this stage, by using the Markov property and 2.10 we may write P T N N , δ ‚ a Y T N L N ,TN p v δ k N ≤ b µ N = N − ℓ Œ = P T N N , δ ‚ a Y T N L N −ℓ,TN p v δ k N ≤ b N − ℓ ∈ τ T Œ = P δ,T N ‚ a Y L N −ℓ p v δ k N ≤ b N − ℓ ∈ τ Œ . Plugging this into 3.30, recalling 3.10 and the fact that P V N ℓ=0 P T N N , δ µ N = N − ℓ → 1 by 3.29, it follows that equation 3.22 is proven, and the proof is complete. 4 Proof of Theorem 1.1: part 2 We assume that T N ∼ const.N 1 3 and we start proving the first relation in 1.6, that we rewrite as follows: for every ǫ 0 we can find M 0 such that for large N P T N N , δ |S N | M · T N ≤ ǫ . Recalling that L T N is the number of times the polymer has touched an interface up to epoch N , see 2.9, we have |S N | ≤ T N · L N ,T N + 1, hence it suffices to show that P T N N , δ L N ,T N M ≤ ǫ . 4.1 By using 2.10 we have P T N N , δ L N ,T M = 1 Z T N N , δ E h e H TN N , δ S 1 {L N ,TN M } i = 1 Z T N N , δ N X r=0 E h e H TN r, δ S 1 {L r,TN M } 1 {r∈τ TN } i P τ T N 1 N − r = 1 Z T N N , δ N X r=0 e φδ,T N r P δ,T N L r,T N M , r ∈ τ T N P τ T N 1 N − r . 2054 By 2.14 and 2.12 it follows easily that Z T N N , δ ≥ Pτ T N 1 N ≥ const. T N e − π2 2T 2 N N 4.2 note that this bound holds true whenever we have const.N 1 4 ≤ T N ≤ const. ′ p N for large N . Using this lower bound on Z T N N , δ , together with the upper bound in 2.14, the asymptotic expansions in 2.18 and 2.12, we obtain P T N N , δ L N ,T M ≤ const. T N N X r=0 P δ,T N L r,T N M , r ∈ τ T N 1 min { p N − r + 1, T N } . The contribution of the terms with r N − T 2 N is bounded with the upper bound 2.21: T N N X r=N −T 2 N 1 T 3 N 1 p N − r + 1 ≤ const. T N −→ 0 N → ∞ , while for the terms with r ≤ N − T 2 N we get T N N X r=0 P δ,T N L r,T N M , r ∈ τ T N 1 T N = E δ,T N L N ,T N − M1 {L N ,TN M } . Finally, we simply observe that {L N ,T N = k} ⊆ T k i=1 {τ i − τ i −1 ≤ N}, hence P δ,T N L N ,T N = k ≤ P δ,T N τ 1 ≤ N k ≤ c k , with 0 c 1, as it follows from 2.16 and 2.18 recalling that N = OT 3 N . Putting together the preceding estimates, we have P T N N , δ L N ,T N M ≤ const. E δ,T N L N ,T N − M1 {L N ,TN M } = const. ∞ X k=M +1 k − M P δ,T N L N ,T N = k ≤ const. ∞ X k=M +1 k − M c k ≤ const. ′ c M , and 4.1 is proven by choosing M sufficiently large. Finally, we prove at the same time the second relations in 1.6 and 1.7, by showing that for every ǫ 0 there exists η 0 such that for large N P T N N , δ |S N | ≤ η T N ≤ ǫ , 4.3 whenever T N satisfies const.N 1 3 ≤ T N ≤ const. ′ p N for large N . Letting P k denote the law of the simple random walk starting at k ∈ N and τ ∞ 1 its first return to zero, it follows by Donsker’s 2055 invariance principle that there exists c 0 such that inf ≤k≤ηT N P k τ ∞ 1 ≤ η 2 T 2 N , S i T N ∀i ≤ τ ∞ 1 ≥ c for large N . Therefore we may write c P T N N , δ |S N | ≤ η T N = c Z T N N , δ ηT N X k=0 E h e H TN N , δ S 1 {|S N |=k} i ≤ 1 Z T N N , δ ηT N X k=0 η 2 T 2 N X u=0 E h e H TN N , δ S 1 {|S N |=k} i P k τ ∞ 1 = u , S i T N ∀i ≤ u = 1 Z T N N , δ ηT N X k=0 η 2 T 2 N X u=0 E h e H TN N +u, δ S 1 {|S N |=k} 1 {|S N +i |T N ∀i≤u} 1 {S N +u =0} i . Performing the sum over k, dropping the second indicator function and using equations 2.11, 2.21 and 2.3, we obtain the estimate P T N N , δ |S N | ≤ η T N ≤ 1 c Z T N N , δ η 2 T 2 N X u=0 E h e H TN N +u, δ S 1 {N+u∈τ TN } i ≤ 1 c Z T N N , δ η 2 T 2 N X u=0 e φδ,T N N +u P δ,T N N + u ∈ τ ≤ const. η 2 T 2 N Z T N N , δ T 3 N e − π2 2T 2 N N . Then 4.2 shows that equation 4.3 holds true for η small, and we are done. 5 Proof of Theorem 1.1: part 3 We now give the proof of part 3 of Theorem 1.1. More precisely, we prove the first relation in 1.7, because the second one has been proven at the end of Section 4 see 4.3 and the following lines. We recall that we are in the regime when N 1 3 ≪ T N ≤ const. p N , so that in particular C := inf N ∈N N T 2 N 0 . 5.1 We start stating an immediate corollary of Proposition 2.3. Corollary 5.1. For every ǫ 0 there exist T 0, M ǫ ∈ 2N, d ǫ 0 such that for T T d ǫ T 3 X k=M ǫ P δ,T k ∈ τ ≤ ǫ . Note that we can restate the first relation in 1.7 as P T N N , δ τ T N L N ,TN ≤ L ≥ 1 − ǫ. Let us define three intermediate quantities, by setting for l ∈ N B 1

l, N = P

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52