Step 1 Step 2 getdoce738. 340KB Jun 04 2011 12:05:07 AM

3.1 Step 1

Recall 2.7 and set Y n = ǫ 1 + · · ·+ǫ n for all n ≥ 1. The first step consists in proving that for all a b in R lim N →∞ P δ,T N a Y k N p v δ k N ≤ b = Pa Z ≤ b , 3.2 that is, under P δ,T N and as N → ∞ we have Y k N p v δ k N =⇒ Z, where “=⇒” denotes convergence in distribution. The random variables ǫ 1 , . . . , ǫ N , defined under P δ,T N , are symmetric and i.i.d. . Moreover, they take their values in {−1, 0, 1}, which together with A.6 entails E δ,T N |ǫ 1 | 3 = E δ,T N ǫ 1 2 −→ v δ as N → ∞. 3.3 Observe that k N → ∞ as N → ∞ and E δ,T N τ 1 = OT 3 N , by 2.19. Thus, we can apply the Berry Esseèn Theorem that directly proves 3.2 and completes this step.

3.2 Step 2

Henceforth, we fix a sequence of integers V N N ≥1 such that T 3 N ≪ V N ≪ N. In this step we prove that, for all a b ∈ R, the following convergence occurs, uniformly in u ∈ {0, . . . , 2V N }: lim N →∞ P δ,T N ‚ a Y L N −u p v δ k N ≤ b Œ = Pa Z ≤ b . 3.4 To obtain 3.4, it is sufficient to prove that, as N → ∞ and under the law P δ,T N , U N := Y k N p v δ k N =⇒ Z and G N := sup u ∈{0,...,2V N } Y L N −u − Y k N p v δ k N =⇒ 0 . 3.5 Step 1 gives directly the first relation in 3.5. To deal with the second relation, we must show that P δ,T N G N ≥ ǫ → 0 as N → ∞, for all ǫ 0. To this purpose, notice that {G N ≥ ǫ} ⊆ A N η ∪ B N η,ǫ , where for η 0 we have set A N η : = L N − k N ≥ ηk N ∪ L N −2V N − k N ≤ −ηk N 3.6 B N η,ǫ : = ¨ sup Y k N +i − Y k N p v δ k N , i ∈ {−ηk N , . . . , ηk N } ≥ ǫ « . 3.7 Let us focus on P δ,T N A N η . Introducing the centered variables f τ k := τ k − k · E δ,T N τ 1 , for k ∈ N, by the Chebychev inequality we can write assuming that 1 − ηk N ∈ N for notational convenience P δ,T N L N −2V N − k N −ηk N = P δ,T N τ 1−ηk N N − 2V N = P δ,T N e τ 1−ηk N N − 2V N − 1 − ηk N E δ,T N τ 1 = ηN − 2V N ≤ 1 − ηk N Var δ,T N τ 1 ηN − 2V N 2 ≤ N Var δ,T N τ 1 ηN − 2V N 2 E δ,T N τ 1 . 3.8 2049 With the help of the estimates in 2.19, 2.20, we can assert that Var δ,T N τ 1 E δ,T N τ 1 = OT 3 N . Since N ≫ V N and N ≫ T 3 N , the r.h.s. of 3.8 vanishes as N → ∞. With a similar technique, we prove that P δ,T N L N − k N ηk N → 0 as well, and consequently P δ,T N A N η → 0 as N → ∞. At this stage it remains to show that, for every fixed ǫ 0, the quantity P δ,T N B N η,ǫ vanishes as η → 0, uniformly in N. This holds true because {Y n } n under P δ,T N is a symmetric random walk, and therefore {Y k N + j − Y k N 2 } j ≥0 is a submartingale and the same with j 7→ − j. Thus, the maximal inequality yields P δ,T N B N η,ǫ ≤ 2 ǫ E δ,T N Y k N +ηk N − Y k N 2 v δ k N ≤ 2 η E δ,T N ǫ 2 1 ǫv δ ≤ 2 η ǫ v δ . 3.9 We can therefore assert that the r.h.s in 3.9 tends to 0 as η → 0, uniformly in N. This completes the step.

3.3 Step 3

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52