Some asymptotic estimates getdoce738. 340KB Jun 04 2011 12:05:07 AM

2.3 Some asymptotic estimates

We now derive some estimates that will be used throughout the paper. We start from the asymptotic behavior of P τ T 1 = n as n → ∞. Let us set gT := − log cos  π T ‹ = π 2 2T 2 + O 1 T 4 , T → ∞ . 2.12 We then have the following Lemma 2.1. There exist positive constants T , c 1 , c 2 , c 3 , c 4 such that when T T the following rela- tions hold for every n ∈ 2N: c 1 min {T 3 , n 3 2 } e −gT n ≤ Pτ T 1 = n ≤ c 2 min {T 3 , n 3 2 } e −gT n , 2.13 c 3 min {T, p n } e −gT n ≤ Pτ T 1 n ≤ c 4 min {T, p n } e −gT n . 2.14 The proof of Lemma 2.1 is somewhat technical and is deferred to Appendix B.1. Next we turn to the study of the renewal process {τ n } n ≥0 , P δ,T . It turns out that the law of τ 1 under P δ,T is essentially split into two components: the first one at O1, with mass e δ , and the second one at OT 3 , with mass 1 − e δ although we do not fully prove these results, it is useful to keep them in mind. We start with the following estimates on P δ,T τ 1 = n, which follow quite easily from Lemma 2.1. Lemma 2.2. There exist positive constants T , c 1 , c 2 , c 3 , c 4 such that when T T the following rela- tions hold for every m, n ∈ 2N ∪ {+∞} with m n: c 1 min {T 3 , k 3 2 } e −gT +φδ,T k ≤ P δ,T τ 1 = k ≤ c 2 min {T 3 , k 3 2 } e −gT +φδ,T k 2.15 P δ,T m ≤ τ 1 n ≥ c 3 € e −gT +φδ,T m − e −gT +φδ,T n Š 2.16 P δ,T τ 1 ≥ m ≤ c 4 e −gT +φδ,T m . 2.17 Proof. Equation 2.15 is an immediate consequence of equations 2.8 and 2.13. To prove 2.16, we sum the lower bound in 2.15 over k, estimating min {T 3 , k 3 2 } ≤ T 3 and observing that by 2.3 and 2.12, for every fixed δ 0, we have as T → ∞ gT + φδ, T = 2 π 2 e −δ − 1 1 T 3 1 + o1 . 2.18 To get 2.17, for m ≤ T 2 there is nothing to prove provided c 4 is large enough, see 2.18, while for m T 2 it suffices to sum the upper bound in 2.15 over k. Notice that equation 2.15, together with 2.18, shows indeed that the law of τ 1 has a component at OT 3 , which is approximately geometrically distributed. Other important asymptotic relations 2047 are the following ones: E δ,T τ 1 = e δ e −δ − 1 2 2 π 2 T 3 + oT 3 , 2.19 E δ,T τ 2 1 = e δ e −δ − 1 3 2 π 4 T 6 + oT 6 , 2.20 which are proven in Appendix A.2. We stress that these relations, together with equation A.6, imply that, under P δ,T , the time ˆ τ needed to hop from an interface to a neighboring one is of order T 3 , and this is precisely the reason why the asymptotic behavior of our model has a transition at T N ≈ N 1 3 , as discussed in the introduction. Finally, we state an estimate on the renewal function P δ,T n ∈ τ, which is proven in Appendix B.2. Proposition 2.3. There exist positive constants T , c 1 , c 2 such that for T T and for all n ∈ 2N we have c 1 min {n 3 2 , T 3 } ≤ P δ,T n ∈ τ ≤ c 2 min {n 3 2 , T 3 } . 2.21 Note that the large n behavior of 2.21 is consistent with the classical renewal theorem, because 1 E δ,T τ 1 ≈ T −3 , by 2.19. One could hope to refine this estimate, e.g., proving that for n ≫ T 3 one has P δ,T n ∈ τ = 1 + o1E δ,T τ 1 : this would allow strengthening part 1 of Theorem 1.1 to a full convergence in distribution S N C δ p N T N =⇒ N 0, 1. It is actually possible to do this for n ≫ T 6 , using the ideas and techniques of [7], thus strengthening Theorem 1.1 in the restricted regime T N ≪ N 1 6 we omit the details. 3 Proof of Theorem 1.1: part 1 We are in the regime when N T 3 N → ∞ as N → ∞. The scheme of this proof is actually very similar to the one of the proof of part i of Theorem 2 in [3]. However, more technical difficulties arise in this context, essentially because, in the depinning case δ 0, the density of contact between the polymer and the interfaces vanishes as N → ∞, whereas it is strictly positive in the pinning case δ 0. For this reason, it is necessary to display this proof in detail. Throughout the proof we set v δ = 1 − e δ 2 and k N = ⌊NE δ,T N τ 1 ⌋. Recalling 2.4 and 2.9, we set Y T N = 0 and Y T N i = ǫ T N 1 + · · · + ǫ T N i for i ∈ {1, . . . , L N ,T N }. Plainly, we can write S N = Y T N L N ,TN · T N + s N , with |s N | T N . 3.1 In view of equation 2.19, this relation shows that to prove 1.5 we can equivalently replace S N C δ p N T N with Y T N L N ,TN p v δ k N . 2048

3.1 Step 1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52