Additional Terminology The Large-Deviation Supermartingale

266 Electronic Communications in Probability

2.1 Additional Terminology

A sequence {X k } of random matrices is adapted to the filtration when each X k is measurable with respect to F k . We say that a sequence {V k } of random matrices is predictable when each V k is measurable with respect to F k−1 . In particular, the sequence {E k−1 X k } of conditional expectations of an adapted sequence {X k } is predictable. A stopping time is a random variable κ : Ω → N ∪{∞} that satisfies {κ ≤ k} ⊂ F k for k = 0, 1, 2, . . . , ∞.

2.2 The Large-Deviation Supermartingale

Consider an adapted random process {X k : k = 1, 2, 3, . . . } and a predictable random process {V k : k = 1, 2, 3, . . . } whose values are self-adjoint matrices with dimension d. Suppose that the two processes are connected through a relation of the form log E k−1 e θ X k ´ gθ · V k for θ 0, 2.1 where the function g : 0, ∞ → [0, ∞]. The left-hand side should be interpreted as a conditional cumulant generating function cgf; see [ Tro10b , Sec. 3.1]. It is convenient to introduce the partial sums of the original process and the partial sums of the conditional cgf bounds: Y := 0 and Y k := X k j=1 X j . W := 0 and W k := X k j=1 V j . The random matrix W k can be viewed as a measure of the total variability of the process {X k } up to time k. The partial sum Y k is unlikely to be large unless W k is also large. To continue, we fix the function g and a positive number θ . Define a real-valued function whose two arguments are self-adjoint matrices: G θ Y , W := tr exp θ Y − gθ · W . We use the function G θ to construct a real-valued random process. S k := S k θ = G θ Y k , W k for k = 0, 1, 2, . . . . 2.2 This process is an evolving measure of the discrepancy between the partial sum process {Y k } and the cumulant sum process {W k }. The following lemma describes the key properties of this random sequence. In particular, the average discrepancy decreases with time. Lemma 2.1. For each fixed θ 0, the random process {S k θ : k = 0, 1, 2, . . . } defined in 2.2 is a positive supermartingale whose initial value S = d. Proof. It is easily seen that S k is positive because the exponential of a self-adjoint matrix is positive definite, and the trace of a positive-definite matrix is positive. We obtain the initial value from a short calculation: S = tr exp θ Y − gθ · W = tr exp0 = tr I = d. The Matrix Freedman Inequality 267 To prove that the process is a supermartingale, we follow a short chain of inequalities. E k−1 S k = E k−1 tr exp θ Y k−1 − gθ · W k + θ X k ≤ tr exp € θ Y k−1 − gθ · W k + log E k−1 e θ X k Š ≤ tr exp θ Y k−1 − gθ · W k + gθ · V k = tr exp θ Y k−1 − gθ · W k−1 = S k−1 . In the second line, we invoke Corollary 1.5, conditional on F k−1 . This step is legal because Y k−1 and W k are both measurable with respect to F k−1 . The next inequality relies on the assump- tion 2.1 and the fact that the trace exponential is monotone with respect to the semidefinite order [ Pet94 , §2.2]. The last equality is true because {W k } is the sequence of partial sums of {V k }. Finally, we present a simple inequality for the function G θ that holds when we have control on the eigenvalues of its arguments. Lemma 2.2. Suppose that λ max Y ≥ t and that λ max W ≤ w. For each θ 0, G θ Y , W ≥ e θ t−gθ ·w . Proof. Recall that gθ ≥ 0. The bound results from a straightforward calculation: G θ Y , W = tr e θ Y −gθ ·W ≥ tr e θ Y −gθ ·wI ≥ λ max € e θ Y −gθ ·wI Š = e θ λ max Y −gθ ·w ≥ e θ t−gθ ·w . The first inequality depends on the semidefinite relation W ´ wI and the monotonicity of the trace exponential with respect to the semidefinite order [ Pet94 , §2.2]. The second inequality relies on the fact that the trace of a psd matrix is at least as large as its maximum eigenvalue. The third identity follows from the spectral mapping theorem and elementary properties of the maximum eigenvalue map.

2.3 A Tail Bound for Adapted Sequences

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52