A Nash type upper bound for the Schrödinger semi-group

Thus, letting t → ∞ first, and then s → ∞, in 2.12, we get the lemma. ƒ

2.3 A Nash type upper bound for the Schrödinger semi-group

We will use the following lemma to prove 1.16. The lemma can be generalized to symmetric Markov chains on more general graphs. However, we restrict ourselves to random walks on Z d , since it is enough for our purpose. Lemma 2.3.1. Let Z t t ≥0 , P x be continuous-time random walk on Z d with the generator: L Z f x = X y ∈Z d a y −x f y − f x, where we assume that the set {x ∈ Z d ; a x 6= 0} is bounded and contains a linear basis of R d , a x = a −x for all x ∈ Z d , Let v : Z d → R be a function such that C v def = sup x ∈Z d P x – exp ‚Z ∞ |vZ t |d t Œ™ ∞. Then, there exists C ∈ 0, ∞ such that sup x ∈Z d P x – exp ‚Z t vZ u du Œ f Z t ™ ≤ C t −d2 X x ∈Z d f x 2.13 for all t 0 and f : Z d → [0, ∞ with P x ∈Z d f x ∞. Proof: We adapt the argument in [1, Lemma 3.1.3]. For a bounded function f : Z d → R, we introduce T t f x = P x – exp ‚Z t vZ u du Œ f Z t ™ , x ∈ Z d , T h t f = 1 h T t [ f h], where hx = P x – exp ‚Z ∞ vZ t d t Œ™ . Then, T t t ≥0 extends to a symmetric, strongly continuous semi-group on ℓ 2 Z d . We now consider the measure P x ∈Z d hx 2 δ x on Z d , and denote by ℓ p,h Z d , k · k p,h the associated L p -space. Then, it is standard e.g., proofs of [2, page 74, Theorem 3.10] and [8, page 16, Proposition 3.3] to see that T h t t ≥0 defines a symmetric strongly continuous semi-group on ℓ 2,h Z d and that for f ∈ ℓ 2,h Z d , E h f , f def. = lim t ց0 1 t X x ∈Z d f x f − T h t f xhx 2 = 1 2 X x, y ∈Z d a y −x | f y − f x| 2 hxh y. By the assumptions on a x , we have the Sobolev inequality: 973 1 X x ∈Z d | f x| 2d d −2 ≤ c 1    1 2 X x, y ∈Z d a y −x | f y − f x| 2    d d −2 for all f ∈ ℓ 2 Z d , where c 1 ∈ 0, ∞ is independent of f . This can be seen via an isoperimetric inequality [9, page 40, 4.3]. We have on the other hand that 2 1C v ≤ hx ≤ C v . We see from 1 and 2 that X x ∈Z d | f x| 2d d −2 hx 2 ≤ c 2 E h f , f d d −2 for all f ∈ ℓ 2,h Z d , where c 2 ∈ 0, ∞ is independent of f . This implies that there is a constant C such that kT h t k 2 →∞,h ≤ C t −d4 for all t 0, e.g.,[3, page 75, Theorem 2.4.2], where k · k p →q,h denotes the operator norm from ℓ p,h Z d to ℓ q,h Z d . Note that kT h t k 1 →2,h = kT h t k 2 →∞,h by duality. We therefore have via semi-group property that 3 kT h t k 1 →∞,h ≤ kT h t2 k 2 2 →∞,h ≤ C 2 t −d2 for all t 0. Since T t f = hT h t [ f h], the desired bound 2.13 follows from 2 and 3. ƒ 3 Proof of Theorem 1.2.1 and Theorem 1.2.3

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52