Central limit theorems for Markov chains

2.2 Central limit theorems for Markov chains

We prepare central limit theorems for Markov chains, which is obtained by perturbation of random walks. Lemma 2.2.1. Let Z t t ≥0 , P x be a continuous-time random walk on Z d starting from x, with the generator L Z f x = X y ∈Z d a y −x f y − f x, where we assume that X x ∈Z d |x| 2 a x ∞. Then, for any B ∈ σ[Z u ; u ∈ [0, ∞], x ∈ Z d , and f ∈ C b R d , lim t →∞ P x [ f Z t − mt p t : B] = P x B Z R d f dν, where m = P x ∈Z d x a x and ν is the Gaussian measure with Z R d x i dνx = 0, Z R d x i x j dνx = X x ∈Z d x i x j a x , i, j = 1, .., d. 2.11 Proof: By subtracting a constant, we may assume that R R d f dν = 0. We first consider the case that B ∈ F s def = σ[Z u ; u ∈ [0, s]] for some s ∈ 0, ∞. It is easy to see from the central limit theorem for Z t that for any x ∈ Z d , lim t →∞ P x [ f Z t −s − mt p t] = 0. With this and the bounded convergence theorem, we have P x [ f Z t − mt p t : B] = P x [P Z s [ f Z t −s − mt p t] : B] −→ 0 as t ր ∞. Next, we take B ∈ σ[Z u ; u ∈ [0, ∞]. For any ǫ 0, there exist s ∈ 0, ∞ and e B ∈ F s such that P x [|1 B − 1 e B |] ǫ. Then, by what we already have seen, lim t →∞ P x [ f Z t − mt p t : B] ≤ lim t →∞ P x [ f Z t − mt p t : e B] + k f kǫ = k f kǫ, where k f k is the sup norm of f . Similarly, lim t →∞ P x [ f Z t − mt p t : B] ≥ −k f kǫ. Since ǫ 0 is arbitrary, we are done. ƒ Lemma 2.2.2. Let Z = Z t t ≥0 , P x be as in Lemma 2.2.1 and and D ⊂ Z d be transient for Z. On the other hand, let e Z = e Z t t ≥0 , e P x be the continuous-time Markov chain on Z d starting from x, with the generator L e Z f x = X y ∈Z d e a x, y f y − f x, 971 where we assume that e a x, y = a y −x if x 6∈ D ∪ { y} and that D is also transient for e Z. Furthermore, we assume that a function v : Z d → R satisfies v ≡ 0 outside D, e P z – exp ‚Z ∞ |ve Z t |d t Œ™ ∞ for some z ∈ Z d . Then, for f ∈ C b R d , lim t →∞ e P z – exp ‚Z t ve Z u du Œ f e Z t − mt p t ™ = e P z – exp ‚Z ∞ ve Z t d t Œ™ Z R d f dν, where ν is the Gaussian measure such that 2.11 holds. Proof: Define H D e Z = inf {t ≥ 0 ; e Z t ∈ D}, T D e Z = sup {t ≥ 0 ; e Z t ∈ D}, e t = exp ‚Z t ve Z s ds Œ . Then, for s t, e P z ” e t f e Z t − mt p t — = e P z ” e t f e Z t − mt p t : T D e Z s — + ǫ s,t = e P z ” e s f e Z t − mt p t : T D e Z s — + ǫ s,t = e P z h e s 1 e Z s 6∈D e P e Z s ” f e Z t −s − mt p t : H D e Z = ∞ —i + ǫ s,t , 2.12 where |ǫ s,t | = e P z ” e t f e Z t − mt p t : T D e Z ≥ s — ≤ k f keP z – exp ‚Z ∞ |ve Z t |d t Œ : T D e Z ≥ s ™ → 0 as s → ∞. We now observe that e P x · |H D e Z = ∞ = P x · |H D Z = ∞ for x 6∈ D, where H D Z is defined similarly as H D e Z. Hence, for x 6∈ D and fixed s 0, we have by Lemma 2.2.1 that lim t →∞ e P x ” f e Z t −s − mt p t : H D e Z = ∞ — = e P x [H D e Z = ∞] Z R d f dν. Therefore, lim t →∞ e P z h e s 1 e Z s 6∈D e P e Z s ” f e Z t −s − mt p t : H D e Z = ∞ —i = e P z h e s 1 e Z s 6∈D e P e Z s [H D e Z = ∞] i Z R d f dν = e P z ” e s : T D e Z s — Z R d f dν. 972 Thus, letting t → ∞ first, and then s → ∞, in 2.12, we get the lemma. ƒ

2.3 A Nash type upper bound for the Schrödinger semi-group

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52