The binary contact path process BCPP

1 Introduction We write N = {0, 1, 2, ...}, N ∗ = {1, 2, ...} and Z = {±x ; x ∈ N}. For x = x 1 , .., x d ∈ R d , |x| stands for the ℓ 1 -norm: |x| = P d i=1 |x i |. For η = η x x ∈Z d ∈ R Z d , |η| = P x ∈Z d |η x |. Let Ω, F , P be a probability space. We write P[X ] = R X d P and P[X : A] = R A X d P for a r.v.random variable X and an event A.

1.1 The binary contact path process BCPP

We start with a motivating simple example. Let η t = η t,x x ∈Z d ∈ N Z d , t ≥ 0 be binary contact path process BCPP for short with parameter λ 0. Roughly speaking, the BCPP is an extended version of the basic contact process, in which not only the presenceabsence of the particles at each site, but also their number is considered. The BCPP was originally introduced by D. Griffeath [4]. Here, we explain the process following the formulation in the book of T. Liggett [5, Chapter IX]. Let τ z,i , z ∈ Z d , i ∈ N ∗ be i.i.d. mean-one exponential random variables and T z,i = τ z,1 + ... + τ z,i . We suppose that the process η t starts from a deterministic configuration η = η 0,x x ∈Z d ∈ N Z d with |η | ∞. At time t = T z,i , η t − is replaced by η t randomly as follows: for each e ∈ Z d with |e| = 1, η t,x = ¨ η t −,x + η t −,z if x = z + e, η t −,x if otherwise with probability λ 2dλ+1 , all the particles at site z are duplicated and added to those on the site z = x + e, and η t,x = ¨ if x = z, η t −,x if x 6= z with probability 1 2dλ+1 all the particles at site z disappear. The replacement occurs independently for different z, i and independently from {τ z,i } z,i . A motivation to study the BCPP comes from the fact that the projected process € η t,x ∧ 1 Š x ∈Z d , t ≥ 0 is the basic contact process [4]. Let κ 1 = 2dλ − 1 2dλ + 1 and η t = exp−κ 1 tη t,x x ∈Z d . Then, |η t | t ≥0 is a nonnegative martingale and therefore, the following limit exists almost surely: |η ∞ | def = lim t |η t |. Moreover, P[ |η ∞ |] = 1 if d ≥ 3 and λ 1 2d1 −2π d , 1.1 where π d is the return probability for the simple random walk on Z d [4, Theorem 1]. It is known that π d ≤ π 3 = 0.3405... for d ≥ 3 [7, page 103]. We denote the density of the particles by: ρ t,x = η t,x |η t | 1 {|η t | 0}, t 0, x ∈ Z d . 1.2 961 Interesting objects related to the density would be ρ ∗ t = max x ∈Z d ρ t,x , and R t = X x ∈Z d ρ 2 t,x . 1.3 ρ ∗ t is the density at the most populated site, while R t is the probability that a given pair of particles at time t are at the same site. We call R t the replica overlap, in analogy with the spin glass theory. Clearly, ρ ∗ t 2 ≤ R t ≤ ρ ∗ t . These quantities convey information on localizationdelocalization of the particles. Roughly speaking, large values of ρ ∗ t or R t indicate that the most of the particles are concentrated on small number of “favorite sites localization, whereas small values of them imply that the particles are spread out over a large number of sites delocalization. As a special case of Corollary 1.2.2 below, we have the following result, which shows the diffusive behavior and the delocalization of the BCPP under the condition 1.1: Theorem 1.1.1. Suppose 1.1. Then, for any f ∈ C b R d , lim t →∞ X x ∈Z d f € x p t Š ρ t,x = Z R d f dν in P · ||η ∞ | 0-probability, where C b R d stands for the set of bounded continuous functions on R d , and ν is the Gaussian measure with Z R d x i dνx = 0, Z R d x i x j dνx = λ 2dλ + 1 δ i j , i, j = 1, .., d. Furthermore, R t = O t −d2 as t ր ∞ in P · ||η ∞ | 0-probability.

1.2 The results

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52