Regeneration times getdoc25fc. 314KB Jun 04 2011 12:04:11 AM

The quenched and annealed laws of Z defined by ¯ P ξ 0,0 · = Z Λ N ¯ P ξ,ε 0,0 · W dε, ¯ P µ,0,0 · = Z D Ω [0,∞ ¯ P ξ 0,0 · P µ dξ, 2.12 coincide with those of Y , i.e., ¯ P ξ 0,0 Z ∈ · = P ξ 0,0 Y ∈ · , ¯ P µ,0,0 Z ∈ · = P µ,0,0 Y ∈ · . 2.13 In words, Z becomes Y when the average over ε is taken. The importance of 2.13 is two-fold. First, to prove the LLN for Y in 2.8 it suffices to prove the LLN for Z. Second, Z suffers time lapses during which its transitions are dictated by ε rather than ξ. By the cone-mixing property of ξ, these time lapses will allow ξ to steadily lose memory, which will be a crucial element in the proof of the LLN for Z.

2.3 Regeneration times

Fix L ∈ 2N and define the L-vector ε L = ℓ + , ℓ − , . . . , ℓ + , ℓ − , 2.14 where the pair ℓ + , ℓ − is alternated 1 2 L times. Given n ∈ N and ε ∈ Λ N with ε n+1 , . . . , ε n+L = ε L , we see from 2.11 that because ℓ + + ℓ − = 0, 2 = 2ℓ ¯ P ξ,ε 0,0 Z n+L = x + Lℓ | Z n = x = 1, x ∈ H, 2.15 which means that the stretch of walk Z n , . . . , Z n+L travels in the vertical direction ℓ irrespective of ξ. Define regeneration times τ L = 0, τ L k+1 = inf n τ L k + L : ε n−L , . . . , ε n−1 = ε L , k ∈ N. 2.16 Note that these are stopping times w.r.t. the filtration G = G n n∈N given by G n = σ{ε i : 1 ≤ i ≤ n}, n ∈ N. 2.17 Also note that, by the product structure of W = w ⊗N defined in 2.9, we have τ L k ∞ ¯ P -a.s. for all k ∈ N. Recall Definition 1.1 and put Φt = sup A∈F0, B∈F θ t PµA P µ B | A − P µ B . 2.18 Cone-mixing is the property that lim t→∞ Φt = 0 for all cone angles θ ∈ 0, 1 2 π, in particular, for θ = 1 4 π needed here. Let H k = σ τ L i k i=0 , Z i τ L k i=0 , ε i τ L k −1 i=0 , { ξ t : 0 ≤ t ≤ τ L k − L} , k ∈ N. 2.19 This sequence of sigma-fields allows us to keep track of the walk, the time lapses and the environ- ment up to each regeneration time. Our main result in the section is the following. 595 Lemma 2.1. For all L ∈ 2N and k ∈ N, ¯ P µ,0,0 -a.s., ¯ P µ,0,0 € Z [k] ∈ · | H k Š − ¯ P µ,0,0 Z ∈ · tv ≤ ΦL, 2.20 where Z [k] =  Z τ L k +n − Z τ L k ‹ n∈N 2.21 and k · k tv is the total variation norm. Proof. We give the proof for k = 1. Let A ∈ σH N be arbitrary, and abbreviate 1 A = 1 {Z∈A} . Let h be any H 1 -measurable non-negative random variable. Then, for all x ∈ H and n ∈ N, there exists a random variable h x,n , measurable w.r.t. the sigma-field σ € Z i n i=0 , ε i n−1 i=0 , { ξ t : 0 ≤ t n − L} Š , 2.22 such that h = h x,n on the event {Z n = x, τ L 1 = n}. Let E P µ ⊗W and Cov P µ ⊗W denote expectation and covariance w.r.t. P µ ⊗ W , and write θ n to denote the shift of time over n. Then ¯ E µ,0,0  h • 1 A ◦ θ τ L 1 ˜‹ = X x∈H,n∈N E P µ ⊗W ¯ E ξ,ε h x,n [1 A ◦ θ n ] 1 n Z n =x,τ L 1 =n o = X x∈H,n∈N E P µ ⊗W f x,n ξ, ε g x,n ξ, ε = ¯ E µ,0,0 h ¯ P µ,0,0 A + ρ A , 2.23 where f x,n ξ, ε = ¯ E ξ,ε 0,0 h x,n 1 n Z n =x,τ L 1 =n o , g x,n ξ, ε = ¯ P θ n ξ,θ n ε x A, 2.24 and ρ A = X x∈H,n∈N Cov P µ ⊗W f x,n ξ, ε, g x,n ξ, ε . 2.25 By 1.11 and 2.18, we have |ρ A | ≤ X x∈H,n∈N Cov P µ ⊗W f x,n ξ, ε, g x,n ξ, ε ≤ X x∈H,n∈N ΦL E P µ ⊗W f x,n ξ, ε sup ξ,ε g x,n ξ, ε ≤ ΦL X x∈H,n∈N E P µ ⊗W f x,n ξ, ε = ΦL ¯ E µ,0,0 h. 2.26 Combining 2.23 and 2.26, we get ¯ E µ,0,0  h • 1 A ◦ θ τ L 1 ˜‹ − ¯ E µ,0,0 h ¯ P µ,0,0 A ≤ ΦL ¯ E µ,0,0 h. 2.27 Now pick h = 1 B with B ∈ H 1 arbitrary. Then 2.27 yields ¯ P µ,0,0 € Z [k] ∈ A | B Š − ¯ P µ,0,0 Z ∈ A ≤ ΦL for all A ∈ σH N , B ∈ H 1 . 2.28 596 Therefore, since 2.28 is uniform in B, 2.28 holds ¯ P µ,0,0 -a.s. when B is replaced by H 1 . More- over, 2.28 holds ¯ P µ,0,0 -a.s. with H 1 in place of B, simultaneously for all measurable cylinder sets A. Since the total variation norm is defined over cylinder sets, we can take the supremum over A to get the claim for k = 1. The extension to k ∈ N is straightforward.

2.4 Gaps between regeneration times

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52