Decomposition of the generator of the environment process

be the maximum variation of f at x, where η x is the configuration obtained from η by flipping the state at site x, and put 9 f 9 = X x∈Z ∆ f x. 3.10 It is easy to check that, for arbitrary cylinder functions f and g on Ω, 9 f g9 ≤ k f k ∞ 9g9 + kgk ∞ 9 f 9. 3.11

3.2.1 Decomposition of the generator of the environment process

Lemma 3.2. Assume 1.3 and suppose that M ε. Write the generator of the environment process ζ defined in 3.3 as L = L + L ∗ = L SRW + L IPS + L ∗ , 3.12 where L SRW f η = 1 2 α + β h f τ 1 η + f τ −1 η − 2 f η i , L ∗ f η = 1 2 α − β h f τ 1 η − f τ −1 η i 2 η0 − 1 . 3.13 Then L is the generator of a Markov process that still has µ as an equilibrium, and that satisfies 9S t f 9 ≤ e −c t 9 f 9 3.14 and kS t f − 〈 f 〉 µ k ∞ ≤ C e −c t 9 f 9, 3.15 where S = S t t≥0 is the semigroup associated with the generator L , c = ε − M , and C ∞ is a positive constant. Proof. Note that L SRW and L IPS commute. Therefore, for an arbitrary cylinder function f on Ω, we have 9S t f 9 = 9e t L SRW e t L IPS f 9 ≤ 9e t L IPS f 9 ≤ e −c t 9 f 9, 3.16 where the first inequality uses that e t L SRW is a contraction semigroup, and the second inequality follows from the fact that ξ falls in the regime M ε see Liggett [15], Theorem I.3.9. The inequality in 3.15 follows by a similar argument. Indeed, kS t f − 〈 f 〉 µ k ∞ = ke t L SRW e t L IPS f − 〈 f 〉 µ k ∞ ≤ ke t L IPS f − 〈 f 〉 µ k ∞ ≤ C e −c t 9 f 9, 3.17 where the last inequality again uses that ξ falls in the regime M ε see Liggett [15], Theorem I.4.1. The fact that µ is an equilibrium measure is trivial, since L SRW only acts on η by shifting it. Note that L SRW is the generator of simple random walk on Z jumping at rate α + β. We view L as the generator of an unperturbed Markov process and L ∗ as a perturbation of L . The following lemma gives us control of the latter. Lemma 3.3. For any cylinder function f on Ω, kL ∗ f k ∞ ≤ α − βk f k ∞ 3.18 and 9L ∗ f 9 ≤ 2α − β 9 f 9 if 〈 f 〉 µ = 0. 3.19 605 Proof. To prove 3.18, estimate kL ∗ f k ∞ = 1 2 α − β k f τ 1 · − f τ −1 · 2 φ · − 1 k ∞ ≤ 1 2 α − β k f τ 1 · + f τ −1 ·k ∞ ≤ α − β k f k ∞ . 3.20 To prove 3.19, recall 3.13 and estimate 9L ∗ f 9 = 1 2 α − β 9 f τ 1 · − f τ −1 · 2 φ · − 1 9 ≤ 1 2 α − β n 9 f τ 1 ·2φ · − 1 9 + 9 f τ −1 ·2φ · − 1 9 o ≤ α − β k f k ∞ 9 2φ − 1 9 + 9 f 9 k2φ − 1k ∞ = α − β k f k ∞ + 9 f 9 ≤ 2α − β 9 f 9, 3.21 where the second inequality uses 3.11 and the third inequality follows from the fact that k f k ∞ ≤ 9 f 9 for any f such that 〈 f 〉 µ = 0. We are now ready to expand the semigroup S of ζ. Henceforth abbreviate c = ε − M . 3.22 Lemma 3.4. Let S = S t t≥0 be the semigroup associated with the generator L defined in 3.13. Then, for any t ≥ 0 and any cylinder function f on Ω, St f = X n∈N g n t, f , 3.23 where g 1 t, f = S t f and g n+1 t, f = Z t S t − s L ∗ g n s, f ds, n ∈ N. 3.24 Moreover, for all n ∈ N, kg n t, f k ∞ ≤ 9 f 9 2α − β c n−1 3.25 and 9g n t, f 9 ≤ e −c t [2α − βt] n−1 n − 1 9 f 9, 3.26 where 0 = 1. In particular, for all t 0 and α − β 1 2 c the series in 3.23 converges uniformly in η. Proof. Since L = L + L ∗ , Dyson’s formula gives e t L f = e t L f + Z t e t−sL L ∗ e s L f ds, 3.27 which, in terms of semigroups, reads St f = S t f + Z t S t − sL ∗ Ss f ds. 3.28 606 The expansion in 3.23–3.24 follows from 3.28 by induction on n. We next prove 3.26 by induction on n. For n = 1 the claim is immediate. Indeed, by Lemma 3.2 we have the exponential bound 9g 1 t, f 9 = 9S t f 9 ≤ e −c t 9 f 9. 3.29 Suppose that the statement in 3.26 is true up to n. Then 9g n+1 t, f 9 = 9 Z t S t − s L ∗ g n s, f ds 9 ≤ Z t 9S t − s L ∗ g n s, f 9 ds ≤ Z t e −ct−s 9L ∗ g n s, f 9 ds = Z t e −ct−s 9L ∗ g n s, f − 〈g n s, f 〉 µ 9 ds ≤ 2α − β Z t e −ct−s 9g n s, f 9 ds, ≤ 9 f 9 e −c t [2α − β] n Z t s n−1 n − 1 ds = 9 f 9 e −c t [2α − βt] n n , 3.30 where the third inequality uses 3.19, and the fourth inequality relies on the induction hypothesis. Using 3.26, we can now prove 3.25. Estimate kg n+1 t, f k ∞ = Z t S t − s L ∗ g n s, f ds ∞ ≤ Z t kL ∗ g n s, f k ∞ ds = Z t L ∗ g n s, f − 〈g n s, f 〉 µ ∞ ds ≤ α − β Z t g n s, f − 〈g n s, f 〉 µ ∞ ds ≤ α − β Z t 9g n s, f 9 ds ≤ α − β 9 f 9 Z t e −cs [2α − βs] n−1 n − 1 ds ≤ 9 f 9 2α − β c n , 3.31 607 where the first inequality uses that S t is a contraction semigroup, while the second and fourth inequality rely on 3.18 and 3.26. We next show that the functions in 3.23 are uniformly close to their average value. Lemma 3.5. Let h n t, f = g n t, f − 〈g n t, f 〉 µ , t ≥ 0, n ∈ N. 3.32 Then kh n t, f k ∞ ≤ C e −c t [2α − βt] n−1 n − 1 9 f 9, 3.33 for some C ∞ 0 = 1. Proof. Note that 9h n t, f 9 = 9g n t, f 9 for t ≥ 0 and n ∈ N, and estimate kh n+1 t, f k ∞ = Z t S t − s L ∗ g n s, f − 〈L ∗ g n s, f 〉 µ ds ∞ ≤ C Z t e −ct−s 9L ∗ g n s, f 9 ds = C Z t e −ct−s 9L ∗ h n s, f 9 ds ≤ C 2α − β Z t e −ct−s 9h n s, f 9 ds ≤ C 9 f 9 e −c t [2α − β] n Z t s n−1 n − 1 ds = C 9 f 9 e −c t [2α − βt] n n , 3.34 where the first inequality uses 3.15, while the second and third inequality rely on 3.19 and 3.26.

3.2.2 Expansion of the equilibrium measure of the environment process

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52