LLN for Y getdoc25fc. 314KB Jun 04 2011 12:04:11 AM

2.6 LLN for Y

Similarly as in 2.29, define Z L k = r L  Z τ L k − Z τ L k−1 ‹ , k ∈ N. 2.43 In this section we prove the LLN for these increments and this will imply the LLN in 2.8. Proof. By Lemma 2.1, we have ¯ P µ,0,0 T L k , Z L k ∈ · | H k−1 − µ L · tv ≤ ΦL a.s. ∀ k ∈ N, 2.44 where µ L A × B = ¯ P µ,0,0 T L 1 ∈ A, Z L 1 ∈ B ∀ A ⊂ r L N , B ⊂ r L H . 2.45 Therefore, by Lemma 2.4, there exists an i.i.d. sequence of random variables e T L k , e Z L k , ∆ L k k∈N 2.46 on r L N × r L H × {0, 1}, where e T L k , e Z L k is distributed according to µ L and ∆ L k is Bernoulli distributed with parameter ΦL, and also a sequence of random variables b T L k , b Z L k k∈N , 2.47 such that ∆ L k is independent of b T L k , b Z L k and T L k , Z L k = 1 − ∆ L k e T L k , e Z L k + ∆ L k b T L k , b Z L k . 2.48 Let z L = ¯ E µ,0,0 Z L 1 , 2.49 which is finite by Lemma 2.2 because |Z L 1 | ≤ T L 1 . Lemma 2.5. There exists a sequence of numbers δ L L∈N , satisfying lim L→∞ δ L = 0, such that lim sup n→∞ 1 n n X k=1 Z L k − z L δ L ¯ P µ,0,0 − a.s. 2.50 Proof. With the help of 2.48 we can write 1 n n X k=1 Z L k = 1 n n X k=1 e Z L k − 1 n n X k=1 ∆ L k e Z L k + 1 n n X k=1 ∆ L k b Z L k . 2.51 By independence, the first term in the r.h.s. of 2.51 converges ¯ P µ,0,0 -a.s. to z L as L → ∞. Hölder’s inequality applied to the second term gives, for α, α ′ 1 with α −1 + α ′−1 = 1, 1 n n X k=1 ∆ L k e Z L k ≤ 1 n n X k=1 ∆ L k α ′ 1 α′ 1 n n X k=1 e Z L k α 1 α . 2.52 599 Hence, by Lemma 2.2 and the inequality |e Z L k | ≤ e T L k compare 2.29 and 2.43, we have lim sup n→∞ 1 n n X k=1 ∆ L k e Z L k ≤ ΦL 1 α′ M α 1 α ¯ P µ,0,0 − a.s. 2.53 It remains to analyze the third term in the r.h.s. of 2.51. Define the filtration b G k = σ ∆ L i , b Z L i : i k . Since |∆ L k b Z L k | ≤ |Z L k |, it follows from Lemma 2.2 that M α ≥ ¯ E µ,0,0 |∆ L k b Z L k | α | b G k = ΦL ¯ E µ,0,0 |b Z L k | α | b G k a.s. 2.54 Next, put b Z ∗L k = ¯ E µ,0,0 b Z L k | b G k and note that M n = n X k=1 ∆ L k k b Z L k − b Z ∗L k 2.55 is a mean-zero martingale w.r.t. the filtration b G n . By the Burkholder-Davis-Gundy inequality Williams [23], 14.18, it follows that, for β = α ∧ 2, ¯ E µ,0,0 ‚ sup n∈N M n ⠌ ≤ Cβ ¯ E µ,0,0 X k∈N [∆ L k b Z L k − b Z ∗L k ] 2 k 2 β2 ≤ Cβ X k∈N ¯ E µ,0,0 |∆ L k b Z L k − b Z ∗L k | β k β ≤ C ′ β, 2.56 for some constants C β, C ′ β ∞. Hence M n a.s. converges to an integrable random variable as n → ∞, and by Kronecker’s lemma Williams [23], 12.7, lim n→∞ 1 n n X k=1 ∆ L k b Z L k − b Z ∗L k = 0 a.s. 2.57 Moreover, if ΦL 0, then by Jensen’s inequality and 2.54 we have |b Z ∗L k | ≤ h ¯ E µ,0,0 bZ L k α | b G k i 1 α ≤ M α ΦL 1 α a.s. Hence 1 n n X k=1 ∆ L k b Z ∗L k ≤ M α ΦL 1 α 1 n n X k=1 ∆ L k . 2.58 As n → ∞, the r.h.s. converges ¯ P µ,0,0 -a.s. to M α 1 α ΦL 1 α′ . Therefore, choosing δ L = 2M α 1 α ΦL 1 α′ , we get the claim. Finally, since e Z L k ≥ r L and 1 n n X k=1 T L k = t L = ¯ E µ,0,0 T L 1 ¯ P µ,0,0 − a.s., 2.59 600 Lemma 2.5 yields lim sup n→∞ 1 n P n k=1 Z L k 1 n P n k=1 T L k − z L t L C 1 δ L ¯ P µ,0,0 − a.s. 2.60 for some constant C 1 ∞ and L large enough. By 2.29 and 2.43, the quotient of sums in the l.h.s. equals Z τ L n τ L n . It therefore follows from a standard interpolation argument that lim sup n→∞ Z n n − z L t L C 2 δ L ¯ P µ,0,0 − a.s. 2.61 for some constant C 2 ∞ and L large enough. This implies the existence of the limit lim L→∞ z L t L , as well as the fact that lim n→∞ Z n n = u ¯ P µ,0,0 -a.s., which in view of 2.13 is equivalent to the statement in 2.8 with u = v, 1.

2.7 From discrete to continuous time

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52