Perpindahan Panas Konduksi Perpindahan Panas Konveksi Perpindahan Panas Radiasi

6

BAB II TINJAUAN PUSTAKA

2.1. Perpindahan Panas

Panas hanya akan berpindah jika ada perbedaan temperatur, yaitu dari sistem yang bertemperatur tinggi ke sistem bertemperatur rendah. Perbedaan temperatur ini mutlak diperlukan sebagai syarat terjadinya perpindahan panas. Selama ada perbedaan temperatur antara dua sistem maka akan terjadi perpindahan panas. Mekanisme perpindahan panas yang terjadi dapat dikategorikan atas 3 jenis yaitu: konduksi, konveksi dan radiasi.

2.1.1. Perpindahan Panas Konduksi

Perpindahan panas dari partikel yang lebih panas ke partikel yang lebih dingin sebagai hasil dari interaksi antara partikel tersebut. Karena partikelnya tidak berpindah, umumnya konduksi terjadi pada medium padat, tetapi bisa juga cair dan gas. Perpindahan panas di sini terjadi akibat interaksi antara partikel tanpa diikuti perpindahan partikelnya. Perhatikan gambar di bawah ini. Gambar 2.1. Perpindahan panas konduksi melalui sebuah plat Secara matematik, untuk plat datar seperti gambar di atas ini, laju perpindahan panas konduksi dirumuskan dengan persamaan berikut. [5] ...............................................................2.1 Atau sering dirumuskan dengan persamaan berikut ini. ...............................................................2.2 Dimana: Universitas Sumatera Utara 7 = Laju perpindahan panas konduksi W A = Luas penampang m 2 ∆T = Beda temperatur K ∆x = Panjang m k = Daya hantar konduktivitas Wm.K

2.1.2. Perpindahan Panas Konveksi

Perpindahan panas konveksi adalah perpindahan panas antara permukaan padat yang berbatasan dengan fluida mengalir. Fluida di sini bisa dalam fasa cair atau fasa gas. Syarat utama mekanisme perpindahan panas konveksi adalah adanya aliran fluida. Perhatikan gambar di bawah ini. Gambar 2.2. Perpindahan panas konveksi dari permukaan plat Secara matematik perpindahan panas konveksi pada permukaan plat rata dapat dirumuskan dengan persamaan berikut ini.[6] Q h = hAT 2 -T 3 ..............................................................2.3 Dimana: Q h = Laju perpindahan panas konveksi W h = Koefisien konveksi Wm 2 K A = Luas penampang perpindahan panas m 2 T 2 = Temperatur permukaan T 3 = Temperatur udara lingkungan Universitas Sumatera Utara 8

2.1.3. Perpindahan Panas Radiasi

Perpindahan panas radiasi adalah panas yang dipindahkan dengan cara memancarkan gelombang elektromagnetik. Berbeda dengan mekanisme konduksi dan konveksi, radiasi tidak membutuhkan medium perpindahan panas. Sampainya sinar matahari ke permukaan bumi adalah contoh yang jelas dari perpindahan panas radiasi. Persamaan yang dapat digunakan untuk menghitung laju perpindahan panas radiasi adalah: [5] Q r = εσA T 2 4 -T 3 4 .....................................................2.4 dimana : Q r = Laju perpindahan panas radiasi W σ = Konstanta Boltzman: 5,67 x 10 -8 Wm 2 K 4 ε = Emisivitas 0 ≤ e ≤ 1 A = Luas penampang m 2 T 2 = suhu permukaan plat K T 3 = suhu lingkungan K

2.2. Radiasi Surya

Dokumen yang terkait

Pengujian Pemanas Air Tenaga Surya Sistem Pipa Panas Menggunakan Fluida Kerja Refrigeran R-718 pada Tekanan Vakum 45 cmHg, 40 cmHg, dan 35 cmHg dengan Variasi Sudut Kolektor 200 dan 300

1 66 157

Performansi Kolektor Surya Pemanas Air Dengan Penambahan External Helical Fins Pada Pipa Dengan Variasi Sudut Kemiringan Kolektor

0 0 6

PENGARUH SUHU TERHADAP KARAKTERISTIK FISIKOKIMIA DAN OPTIK BROKOLI SELAMA PROSES PENGERINGAN VAKUM DENGAN TEKANAN 15 cmHg

0 0 8

Pengujian Pemanas Air Tenaga Surya Sistem Pipa Panas Menggunakan Fluida Kerja Refrigeran R-718 pada Tekanan Vakum 45 cmHg, 40 cmHg, dan 35 cmHg dengan Variasi Sudut Kolektor 200 dan 300

0 0 32

BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas - Pengujian Pemanas Air Tenaga Surya Sistem Pipa Panas Menggunakan Fluida Kerja Refrigeran R-718 pada Tekanan Vakum 45 cmHg, 40 cmHg, dan 35 cmHg dengan Variasi Sudut Kolektor 200 dan 300

0 0 24

BAB I PENDAHULUAN 1.1. Latar Belakang - Pengujian Pemanas Air Tenaga Surya Sistem Pipa Panas Menggunakan Fluida Kerja Refrigeran R-718 pada Tekanan Vakum 45 cmHg, 40 cmHg, dan 35 cmHg dengan Variasi Sudut Kolektor 200 dan 300

0 0 6

PENGUJIAN PEMANAS AIR TENAGA SURYA SISTEM PIPA PANAS MENGGUNAKAN FLUIDA KERJA REFRIGERAN R-718 PADA TEKANAN VAKUM 45 cmHg, 40 cmHg DAN 35 cmHg DENGAN VARIASI SUDUT KOLEKTOR 20 DAN 30

0 0 15

Pengujian Pemanas Air Tenaga Surya Sistem Pipa Panas Menggunakan Fluida Kerja Refrigeran R-718 pada Tekanan Vakum 45 cmHg, 40 cmHg dan 35 cmHg dengan Variasi Kemiringan Kolektor 400 dan 500.

0 1 22

BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas - Pengujian Pemanas Air Tenaga Surya Sistem Pipa Panas Menggunakan Fluida Kerja Refrigeran R-718 pada Tekanan Vakum 45 cmHg, 40 cmHg dan 35 cmHg dengan Variasi Kemiringan Kolektor 400 dan 500.

0 0 32

PENGUJIAN PEMANAS AIR TENAGA SURYA SISTEM PIPA PANAS MENGGUNAKAN FLUIDA KERJA REFRIGERAN R-718 PADA TEKANAN VAKUM 45 cmHg, 40 cmHg DAN 35 cmHg DENGAN VARIASI KEMIRINGAN KOLEKTOR 40 DAN 50

0 0 16