Elementary properties getdoc9334. 385KB Jun 04 2011 12:04:41 AM

4 The critical equation

4.1 Elementary properties

Existence to the solutions of 37, 39 with initial condition satisfying m 2 0 +∞ and boundary condition ∞ X k=1 v k t ≡ 1 102 follows as corollary to Propositions 1 and 2: indeed for any initial condition v ∈ V 1 we can prepare a sequence of initial conditions of the random graph problem such that 32 holds as n → ∞ we do not need to assume convergence of m n,2 0 to m 2 0. If n −1 ≪ λn ≪ 1 then any weak limit of the probability measures P n is concentrated on a subset of FFFs which generate a FFE satisfying 37, 102. Moreover it is easily seen that 102 implies that r · must be continuous, and for k ≥ 2, the functions t 7→ v k t solving 37 are differentiable. Thus v· solves 12, 13. Note that assuming that v · ∈ E v [0, T ] is a solution of 12,13 one can deduce only from these equations that 37 holds with a control function r · satisfying 40: one has to define a FFF using 33 and q k, ∞ · ≡ 0: plugging θ t ≡ 0 into 21 we can see that the function r· is increasing. Taking the generating function of a solution of 37, 39, 102 with initial condition satisfying m 2 0 +∞ we get a solution of 43, 45 satisfying the boundary condition V t, 0 ≡ 0. In this case the increasing function t 7→ rt is absolutely continuous with respect to Lebesgue measure: its Radon-Nykodim derivative ˙rt = ϕt is a.e. bounded in compact domains: Taking the limit x → 0 in 43 and using 71, 58 which holds because V t, 0 ≡ 0 we find rt 2 − rt 1 = lim x →0 1 2 Z t 2 t 1 V s, xV ′ s, xds ≤ C · t 2 − t 1 . 103 Thus in the sequel we assume given a solution of the critical Burgers control problem ˙ V t, x = −V ′ t, xV t, x + e −x ϕt, 104 V t, 0 ≡ 0 105 V 0, x = V x 106 where ϕt is nonnegative and bounded on [0, T ], and V t, x is of the form 41. Lemma 10. For any solution of 104, 106, 105 with V ′′ 0 +∞ and for any t ≥ T gel see 8 we have V ′ t, 0 := lim x →0 V ′ t, x = −∞. Proof. We actually prove that for any t ∞, x ∞ there exists a constant C = Ct, x 0 such that for any t, x ∈ [T gel , t] × 0, x], −V ′ t, x ≥ C p x. One can prove the upper bound of 60 for all V x satisfying V 0 = 0 without the assumption 59 the same proof works. 1319 From 71 and the upper bound of 60 it follows that there exists a constant e C ∞ such that for t, x ∈ [T gel , t] × 0, x] Et, x −1 ≤ e C, −V t, x ≤ e C x 1 2 . Differentiating with respect to x in 104 we get d d t −V ′ t, x = V ′ t, x 2 + V t, xV ′′ t, x + e −x ϕt = V ′ t, x 2 · ‚ 1 − V t, xV ′ t, x Et, x Œ + e −x ϕt ≥ V ′ t, x 2 € 1 − e C 2 x 1 2 · −V ′ t, x Š 107 There exists a 0 b C such that for x ∈ 0, x] we have − V ′ T gel , x ≥ b C p x 108 by 61 and 71, since V ′ T gel , 0 = −∞ ⇐⇒ m 1 T gel = +∞ follows from the fact that for t ≤ T gel the solutions of 6 and 12+13 coincide, and it is well-known from the theory of the Smoluchowski coagulation equations that we have 9 for the solution of 6. From the differential inequality 107 it follows that − V ′ t, x ≤ 1 e C x −12 =⇒ d d t −V ′ t, x ≥ 0 109 Let C := min { b C, e C −1 }. For t, x ∈ [T gel , t] × 0, x] the inequality −V ′ t, x ≥ C p x. follows from 108 and 109 by a “forbidden region”-argument. Summarizing: from Lemmas 3, 4, 10 and 103 it follows Lemma 11. For t, x ∈ [T gel , t] × 0, x] −V t, x ≍ x 1 2 , 110 −V ′ t, x ≍ x −12 , 111 V ′′ t, x ≍ x −32 , 112 V t, xV ′ t, x ≍ 1, 113 ϕt ≍ 1. 114 1320

4.2 Bounds on E

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52