The integrated Burgers control problem

from Proposition 1 since 19 becomes v k t = v k 0 + k 2 k −1 X l=1 q l,k −l t − kq k t = v k 0 + Z t k 2 k −1 X l=1 v l sv k −l s − kv k s ds which is the integral form of 6. Plugging 33 into 22 we get for t T gel q k, ∞ t = Z t v k sθ s ds 0. 36

2.3 The integrated Burgers control problem

If v · ∈ E v [0, T ] is generated by a FFF satisfying 33 through 19, then r · = X k ∈ ¯ N r k · = ∞ X k=1 r k · + r ∞ · = ∞ X k=1 0 + r ∞ · = r ∞ · and v · is a solution of the controlled Smoluchowski integral equations with control function r·: v k t = v k 0 + k 2 k −1 X l=1 Z t v l sv k −l sds − k Z t v k sds + 11 {k=1} rt, k ∈ N 37 v k t ≥ 0, ∞ X k=1 v k t ≤ 1 38 v0 = v ∈ V 1 . 39 By qT ≤ T , r ∞ · = r· and 26 we get 0 = r0 ≤ rs ≤ rt for ≤ s ≤ t ≤ T, rT ≤ 1 + T 2 . 40 Using induction on k one can see that the initial condition v and the control function r · deter- mines the solution of 37, 39 uniquely. For v ∈ V we introduce the generating function V : [0, ∞ → [−1, 0], V x := ∞ X k=1 v k e −kx − 1. 41 x 7→ V x is analytic on 0, ∞ and has the following straightforward properties: lim x →∞ V x = −1, V ′ x ≤ 0, V ′′ x ≥ 0. 42 It is easy to see that if t 7→ vt is a solution of 37, 38, 39 then the corresponding generating functions t 7→ V t, · will solve the integrated Burgers control problem V t, x − V 0, x + Z t V s, xV ′ s, xds = e −x rt, 43 − 1 ≤ V t, 0 ≤ 0 44 V 0, x = V x. 45 1305 The control function r · was defined to be continuous from the left in 18, but it need not be continuous: when λn = n −1 λ then the FFE obtained as the n → ∞ limit satisfies 37, 38, 39, but the control function r · evolves randomly according to the rules 10, 11: P rt + d t = rt + θ t Ft = λθ td t + od t Thus r · is a random step function in this case. In order to rewrite 43 as a differential equation we introduce a new time variable τ: t τ := max{t : t + rt ≤ τ} 46 It is easily seen that t τ is increasing and Lipschitz-continuous: t τ = Z τ αs ds ≤ α· ≤ 1 47 Given a solution V t, x of 43, 44, 45 define V τ, x := V tτ, x + τ − tτ − rtτ e −x 48 Then by 43 we have V τ, x = V 0, x − Z t τ V s, xV ′ s, x ds + τ − tτe −x . 49 Now we show that for all τ ≥ 0, x 0 and t ≥ 0 we have ∂ τ V τ, x = −Vτ, xV ′ τ, xατ + 1 − ατe −x 50 − 1 ≤ Vτ, 0 ≤ 0 51 V0, x = V x 52 Vt + rt, x = V t, x 53 First note that the fact V τ, x 6= V tτ, x =⇒ ατ = 0 54 follows directly from 46, 47 and 48: if rt + 6= rt, then ατ = 0 for all t + rt τ ≤ t + rt + . The differential equation 50 follows from 47, 49 and 54. The boundary inequality 51 follows from −1 ≤ V tτ, x ≤ Vτ, x ≤ V tτ + , x ≤ 0. The initial conditions 45 and 52 are equivalent, and 53 follows from 48 and 46. From the definition of Lebesgue-Stieltjes integration it follows that for all t 1 ≤ t 2 we have Z t 2 +rt 2 t 1 +rt 1 f t τ1 − ατ dτ = Z t 2 t 1 f t d rt 55 1306 3 Boundary behavior

3.1 Elementary facts about generating functions

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52