No giant component in the limit

3.3 No giant component in the limit

The aim of this subsection is to prove the following proposition: Proposition 2. If n −1 ≪ λn ≪ 1 and m 2 0 +∞ holds for v0 on the right-hand side of 32 then any weak limit point P of the sequence of probability measures P n is concentrated on the set of conservative forest fire evolutions: P ∞ X k=1 v k t ≡ 1 = 1 75 We are going to prove Proposition 2 by contradiction: in Lemma 6 we show that if θ · 6≡ 0 in the limit, then there is a positive time interval such that θ t has a positive lower bound, and that this implies that even in the convergent sequence of finite-volume models, a lot of mass is contained in arbitrarily big components on this interval. Than in subsequent Lemmas we prove that these big components indeed burn, which produces such a big increase in the value of the burnt mass r · that is in contradiction with E rT ≤ 2 + E qT ≤ 2 + T . By Proposition 1 the random FFE obtained as a weak limit point is almost deterministic: 37 holds with a possibly random control function r ·. Also, by 33 we P-almost surely have qt ≤ t from which 40 follows. Thus 71 and 73 hold P-almost surely for the random flow obtained as a weak limit point with a deterministic constant C ∗ . Lemma 6. If P n ⇒ P where P does not satisfy 75 on [0, T ], then there exist ǫ 1 , ǫ 2 , ǫ 3 0 and a deterministic t ∗ ∈ [ǫ 1 , T ] such that for every K +∞, every m +∞ and every sequence t ∗ − ǫ 1 α 1 β 1 α 2 β 2 · · · α m β m t ∗ there exists an n +∞ such that for every n ≥ n and 1 ≤ i ≤ m we have P n max α i ≤t≤β i 1 − K −1 X k=1 v n,k t ǫ 2 ǫ 3 . 76 Proof. First we prove that if P does not satisfy 75 then there exist ǫ 1 , ǫ 2 , ǫ 3 0 and ǫ 1 ≤ t ∗ ≤ T such that P inf t ∗ −ǫ 1 ≤t≤t ∗ θ t ǫ 2 ǫ 3 . 77 Since 75 is violated, we have P sup ≤t≤T θ t ǫ ǫ for some ǫ 0. Let L := ⌊ 2C ∗ T ǫ ⌋ and t i := ǫi 2C ∗ for 1 ≤ i ≤ L where C ∗ is the constant in 73. Since θ 0 = 0 we have sup ≤t≤T θ t ǫ ⊆ L [ i=1 θ t i ǫ 2 almost surely with respect to P. Thus P θ t ∗ ǫ 2 ǫ L for some t ∗ ∈ {t 1 , . . . t L }. Using 73 again 77 follows with ǫ 1 := ǫ 4C ∗ , ǫ 2 := ǫ 4 , ǫ 3 = ǫ L . 1311 Now given K and the intervals [ α i , β i ], 1 ≤ i ≤ m we define the continuous functionals f i : D[0, T ] → R by f i v0, q ·, r· := 1 β i − α i Z β i α i 1 − K X k=1 v k t d t where v k t is defined by 19. Thus for all i H i := { v0, q·, r· ∈ D[0, T ] : f i v0, q ·, r· ǫ 2 } is an open subset of D[0, T ] with respect to the topology of Definition 1. Thus by the definition of weak convergence of probability measures we have lim n →∞ P n H i ≥ PH i ≥ P inf t ∗ −ǫ 1 ≤t≤t ∗ θ t ǫ 2 ǫ 3 from which the claim of the lemma easily follows. Lemma 7. If n −1 ≪ λn then for every ǫ 2 0 there is a ǫ 4 0 such that for every ˜t 0 there is a K and an n 1 such that for all n ≥ n 1 1 − P K −1 k=1 v n,k 0 ≥ ǫ 2 implies E n r n ˜t ≥ ǫ 4 78 The proof of Lemma 7 will follow as a consequence of the Lemmas 8 and 9. Proof of Proposition 2. We are going to show that if there is a sequence P n such that the weak limit point P violates 75 then for some n we have E n r n T T + 2 79 which is in contradiction with 35 and 26. In fact, T +2 could be replaced with any finite constant in 79, but T + 2 is big enough to have a contradiction. We define ǫ 1 , ǫ 2 , ǫ 3 0 and t ∗ using Lemma 6. Next, we define ǫ 4 using this ǫ 2 and Lemma 7. Given these, we choose ˜t be so small that › ǫ 1 2˜t ž ǫ 3 ǫ 4 T + 2. We choose K and n 1 big enough so that 78 holds. Further on, we fix the intervals [ α i , β i ], 1 ≤ i ≤ m = ⌊ ǫ 1 2˜t ⌋ so that α i+1 − β i ˜t holds for all i and also T − β m ˜t holds. We choose n such that 76 holds and let n := max {n , n 1 }. Finally, we define the stopping times τ 1 , τ 2 , . . . , τ m by τ i := β i ∧ min{t : t ≥ α i and 1 − K −1 X k=1 v n,k t ≥ ǫ 2 }. We have τ i + t ∗ ≤ β i + t ∗ α i+1 ≤ τ i+1 . Using the strong Markov property, 78 and 76, the inequality 79 follows: E r n T ≥ m X i=1 E r n τ i + ˜t − r n τ i τ i β i P τ i β i ≥ mǫ 4 ǫ 3 . 1312 Lemma 7 stated that if initially a lot of mass is contained in big components, then in a short time a lot of mass burns. We prove this statement in two steps: in Lemma 8 we prove that if we start with a lot of mass contained in big components, then in a short time either a lot of this mass is burnt or the big components coagulate, so a lot of mass is contained in components of size n 1 3 the same proof works if we replace the exponent α = 13 by any 0 α 12. Then in Lemma 9 we prove that if we start with a lot of components of size n 1 3 then in a short time a lot of mass burns. We will make use of the following generating function estimates in the proof of Lemma 8. If V x is defined as in 41 and if v ∈ V 1 then for ǫ ≤ 1 2 1 − K −1 X k=1 v k ≥ ǫ =⇒ V 1 K ≤ e −1 − 1ǫ 80 V 1 K ≤ −ǫ =⇒ 1 − ǫK2 X k=1 v k ≥ ǫ4. 81 Lemma 8. There are constants C 1 +∞, C 2 0, C 3 0 such that if 1 − K −1 X k=1 v n,k 0 ≥ ǫ 2 82 for all n then lim n →∞ P n X k=C 3 ǫ 2 n 1 3 v n,k ¯t + r n ¯t ≥ C 2 ǫ 2 = 1 83 Where ¯t = C 1 K ǫ 2 . Sketch proof. If we let n → ∞ immediately, we get that the limiting functions v 1 t, v 2 t, . . . solve 37, 38, 39 with a possibly random control function rt ≡ r ∞ t. The n → ∞ limit of 83 is θ ¯t + r ¯t ≥ C 2 ǫ 2 84 Now we prove that if v · is a solution of 37, 38, 39 then 1 − P K −1 k=1 v k 0 ≥ ǫ 2 implies 84 with C 1 = 4 and C 2 = 1 4 . This proof will also serve as an outline of the proof of Lemma 8. In order to prove 84 define V t, x by 41. Thus V t, x solves the integrated Burgers control problem 43, 44, 45. Define Ut, x := V t, x − rte −x . Thus U ′ t, x = V ′ t, x + rte −x and by 43 we have ˙ Ut, x = −V t, xV ′ t, x. Define the characteristic curve ξ· by ˙ ξt = V t, ξt ξ0 = 1 K 85 Let ut := Ut, ξt − V 0, 1 K . Thus u0 = 0, and ˙ ut = ˙ Ut, ξt + U ′ t, ξt ˙ ξt = −V t, ξtV ′ t, ξt+ € V ′ t, ξt + rte −ξt Š V t, ξt = rte −ξt V t, ξt ≤ 0. 86 1313 Thus ut ≤ 0, moreover V t, ξt = V 0, 1 K + rte −ξt + ut ≤ V 0, 1 K + rt, 87 ξt = 1 K + Z t us ds + Z t rse −ξs ds + t V 0, 1 K ≤ 1 K + t · rt + tV 0, 1 K . 88 By 80 we have V 0, 1 K ≤ − 1 2 ǫ 2 . In order to prove that θ ¯t+ r ¯t ≥ 1 4 ǫ 2 with ¯t = 4 K ǫ 2 we consider two cases: If r ¯t ≥ 1 4 ǫ 2 then we are done. If r ¯t 1 4 ǫ 2 define τ := min{t : ξt = 0}. By 88 we have ξ¯t ≤ 1 K + ¯t · r¯t + ¯t · − 1 2 ǫ 2 1 K + 1 K − 2 K = 0 Thus τ ≤ ¯t. By 87 we get −θ τ = V τ, 0 = V τ, ξτ ≤ − 1 2 ǫ 2 + 1 4 ǫ 2 = − 1 4 ǫ 2 Thus 1 4 ǫ 2 ≤ θ τ ≤ θ τ+ rτ ≤ θ ¯t+ r ¯t because by 21 the function θ t+ rt is increasing. To make this proof work for Lemma 8 we have to deal with the fluctuations caused by randomness, combinatorial error terms and the fact that λn only disappears in the limit. Proof of Lemma 8. Given a FFF obtained from a forest fire Markov process by 29,30 and 31, define U n t, x := n X k=1  v n,k 0 + k 2 k −1 X l=1 q n,l,k −l t − kq n,k t − r n,k t   e −kx − 1 − λn By 19 we have U n t, x + r n te −x = n X k=1 v n,k te −kx − 1 − λn =: V n t, x − λn =: W n t, x. W ′ t, x = − X k ≥1 k · v n,k te −kx − 1 2 ∂ x W t, x + 1 + λn 2 = X k ≥1 k 2 k −1 X l=1 v n,l tv n,k −l te −kx W ′′ t, x = X k ≥1 k 2 · v n,k te −kx W ′′ t, 2x = X k ≥1 k 2 2 · 11[2 | k] · v n, k 2 te −kx 1314 If X t is a process adapted to the filtration F t, let L X t := lim d t →0 1 d t E X t + d t − X t F t Using the martingales of Proposition 1 we get L U n t, x = X k ≥1   k 2 k −1 X l=1 L q n,l,k −l t − k · L q n,k t − L r n,k t   e −kx = X k ≥1   k 2 k −1 X l=1 v n,l tv n,k −l t − l · 11[2l = k] n v n,l t − k · v n,k t − k n v n,k t − € λn · k · v n,k t Š e −kx = − 1 2 ∂ x W t, x + 1 + λn 2 − 1 n W ′′ t, 2x+ W ′ t, x + 1 n W ′′ t, x + λnW ′ t, x = − W ′ n t, xW n t, x + 1 n € W ′′ n t, x − W ′′ n t, 2x Š 89 Given the random function W n t, x we define the random characteristic curve ξ n t similarly to 85: ˙ ξ n t = W n t, ξ n t, ξ n 0 := 1 K 90 This ODE is well-defined although W n t, x is not continuous in t, but almost surely it is a step function with finitely many steps which is a sufficient condition to have well-posedness for the solution of 90. Define u n t := U n t, ξ n t − W n 0, 1 K . Thus u n 0 = 0 and u n t = W n t, ξ n t − W n 0, 1 K − r n te −ξ n t = V n t, ξ n t − V n 0, 1 K − r n te −ξ n t 91 The solution of 90 is ξ n t = 1 K + Z t u n s ds + Z t r n se −ξ n s ds + tW n 0, 1 K 92 Putting together 89 and 90 similarly to 86 and using 56 we get L u n t ≤ 1 n € W ′′ n t, ξ n t − W ′′ n t, 2ξ n t Š ≤ n −1 · ξ n t −2 93 Now e u n t = u n t − R t L u n sds is a martingale and L e u n t 2 = lim h →0 + 1 h E U n t + h, ξ n t − U n t, ξ n t 2 F t ≤ 1 2 n X k,l=1 k + l n e −k+lξ n t − k n e −kξ n t − l n e −lξ n t 2 v n,k tv n,l tn + n X l=1 l n e −lξ n t 2 λnv n,l tn = O 1 n W ′′ n t, ξ n t = O € n −1 · ξ n t −2 Š 94 1315 Define the stopping time τ n := min {t : ξ n t = n −α } α = 13. In fact any 0 α 12 would be just as good to make the right-hand side of 93 and 94 disappear when t ≤ τ n and n → ∞. It follows from 94 and Doob’s maximal inequality that sup t eu n t ∧ τ n ∧ T ⇒ 0 as n → ∞ By 93 we have e u n t + R t n −1 · ξ n s −2 ds ≥ u n t thus sup t u n t ∧ τ n ∧ T ⇒ 0 as n → ∞ 95 By 80 and 82 we have V n 0, 1 K ≤ e −1 − 1ǫ 2 =: −ǫ 5 96 Define the events A n , B n and the time ¯t n by A n := sup t ≤τ n ∧T Z t u n sds ≤ 1 K ∩ u n τ n ∧ T ≤ ǫ 5 3 , B n := r n τ n ≤ ǫ 5 3 , ¯t n := 3 K W n 0, ξ n ≤ 3 K ǫ 5 , We are going to show that that there are constants C 2 , C 3 +∞ such that A n ⊆ n X k=C 3 ǫ 2 n 1 3 v n,k ¯t + r n ¯t ≥ C 2 ǫ 2 97 which, since 95 implies that lim n →∞ P A n = 1, gives 83. First we show that A n ∩ B n ⊆ {τ n ≤ ¯t n }. 98 If we assume indirectly that A n , B n and τ n ¯t n hold then R ¯t n u n sds ≤ 1 K , so by 92 we get ξ n ¯t n ≤ 1 K + 1 K + Z ¯t n r n se −ξ n s ds + ¯t n W n 0, ξ n 0 ≤ − 1 K + ¯t n · r n τ n ≤ 0. But ξ n ¯t n ≤ 0 is in contradiction with τ n ¯t n , thus 98 holds. Now, by 91 we have V n τ n , n −13 = u n τ n + V n 0, 1 K + r n τ n e −n −13 . Thus by 96, the definition of A n and B n and 81 we get A n ∩ B n ⊆ u n τ n ≤ ǫ 5 3 ∩ V n 0, 1 K ≤ −ǫ 5 ∩ r n τ n e −n −13 ≤ ǫ 5 3 ⊆ V n τ n , n −13 ≤ −ǫ 5 3 ⊆ n X k=n 1 3 ǫ 5 6 v n,k τ n ≥ ǫ 5 12 1316 Thus we have A n ⊆ A n ∩ B n ∪ B c n ⊆ n X k=n 1 3 ǫ 5 6 v n,k τ n ≥ ǫ 5 12 ∪ r n τ n ǫ 5 3 ⊆ n X k=C 3 ǫ 2 n 1 3 v n,k τ n + r n τ n ≥ C 2 ǫ 2 with C 3 = 1 − e −1 6 and C 2 = 1 − e −1 12. But P n k=C 3 ǫ 2 n 1 3 v n,k t + r n t increases with time, from which 97 follows. Lemma 9. There are constants C 4 +∞, C 5 0 such that if n X k=C 3 ǫ 2 n 1 3 v n,k 0 ≥ C 2 ǫ 2 2 for all n then with ¯t n := C 4 ǫ −2 2 n −13 logn + n λn −1 99 we have lim n →∞ E r n ¯t n ≥ C 5 ǫ 2 . 100 Remark. The upper bound 99 is technical: on one hand it is not optimal, on the other hand, for the proof of Lemma 7 we only need ¯t n ≪ 1 as n → ∞. Proof. If v is a vertex of the graph Gn, t let C n v, t denote the connected component of v at time t. Denote by τ b v the first burning time of v: τ b v := inf{t : C n v, t + C n v, t − } Of course C n v, τ b v + = 1. Define ¯n := C 3 ǫ 2 n 1 3 and H n t := {v : C n v, 0 ≥ ¯n and τ b v t} Fix a vertex v ∈ H n 0. c n t := 1 n C n v, t ∧ τ b v − w n t := 1 n H n t z n t := 1 n X w ∈H n 11 {τ b w≤t} = w n 0 − w n t Thus c n t is an increasing process we freeze c n t when it burns. We consider the right- continuous versions of the processes c n t, w n t, z n t. w n 0 ≥ C 2 ǫ 2 2 =: ǫ 6 . 1317 We are going to prove that there are constants C 4 +∞, C 5 0 such that lim n →∞ E z n ¯t n ≥ C 5 ǫ 2 101 which implies 100. Define the stopping times τ w := inf {t : w n t ǫ 6 2} τ g := inf {t : c n t ǫ 6 4} τ := τ b v ∧ τ w ∧ τ g Since v ∈ H n 0 we have c n t ≥ c n 0 = C n v, 0 n ≥ ¯ n n If C n v, t is connected to a vertex in H n t by a new edge at time t then c n t + − c n t − ≥ ¯ n n , logc n t + − logc n t − ≥ log 1 + ¯ n nc n t − ≥ log2¯ n nc n t − L logc n t ≥ log2¯ n nc n t lim d t →0 1 d t P c n t + d t − c n t ≥ ¯ n n F t ≥ log2¯ n nc n t · 1 n C n v, t € H n t − C n v, t Š 11 {t ≤τ b v} ≥ log2¯n · w n t − c n t 11 {t ≤τ b v} ≥ log2¯ n ǫ 6 4 11 {t≤τ} = n 1 3 log2 8 · C 2 · C 3 · ǫ 2 2 · 11 {t≤τ} =: n 1 3 ǫ 7 11 {t≤τ} Thus logc n t − ǫ 7 · n 1 3 t ∧ τ is a submartingale. Using the optional sampling theorem we get −ǫ 7 · n 1 3 E τ ≥ E logc n τ − ǫ 7 · n 1 3 E τ ≥ logc n 0 ≥ − logn By Markov’s inequality we obtain that for some constant C +∞ P τ ≤ C n −13 ǫ −2 2 logn ≥ 1 2 If τ g ≤ τ b v ∧ τ w , then C n v, τ g ǫ 6 4 n, so E τ b v − τ g ≤ nλn −1 4 ǫ 6 , which implies P τ w ∧ τ b ≤ C n −13 ǫ −2 2 logn + C ′ nλn −1 ǫ −1 2 ≥ 1 4 . for some constant C ′ . We define ¯t of 99 with C 4 := max {C, C ′ }. Using the linearity of expectation we get E z n ¯t = E 1 n X w ∈H n 11 {τ b w≤¯t} ≥ ǫ 6 P τ b v ≤ ¯t . The inequality 11 {τ w ≤¯t} ǫ 6 2 ≤ z n ¯t follows from the definition of τ w . 1 4 ≤ P τ w ∧ τ b ≤ ¯t ≤ P τ w ≤ ¯t + P τ b ≤ ¯t ≤ E z n ¯t 2 ǫ 6 + E z n ¯t 1 ǫ 6 From this 101 follows. 1318 4 The critical equation

4.1 Elementary properties

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52