Proof of Theorem 3.1 getdoc6e81. 348KB Jun 04 2011 12:04:30 AM

Now by Remark 2.6, 2.1 and 2.2 are respectively equivalent to X K ≥0 2 Kp 2−2 kZ K k 1,Φ,p ∞ , and X K ≥0 2 −2Kp kZ K k p 2 ∞ . Next, by Proposition 5.1, ζ p,K = O2 K under 2.1 and 2.2. Therefrom, taking into account the inequality 5.13, we derive that under 2.1 and 2.2, 2 −L E U L − ˜ U L p −2 Z 1 L ≤ C2 −2Lp kZ L k p 2 + C2 Lp 2−2 kZ L k 1,Φ,p . 5.32 Consequently, combining 5.32 with the upper bounds 5.29, 5.30 and 5.31, we obtain that 2 N X m=1 D ′′ m = ¨ O2 N r+2 −p2 if r ≥ p − 2 and r, p 6= 1, 3 ON if r = 1 and p = 3. 5.33 From 5.17, 5.18, 5.19, 5.22, 5.24, 5.27 and 5.33, we obtain 5.15 and 5.16.

5.2 Proof of Theorem 3.1

By 3.1, we get that see Volný 1993 X = D + Z − Z ◦ T, 5.34 where Z = ∞ X k=0 E X k |F −1 − ∞ X k=1 X −k − EX −k |F −1 and D = X k ∈Z E X k |F − EX k |F −1 . Note that Z ∈ L p , D ∈ L p , D is F -measurable, and ED |F −1 = 0. Let D i = D ◦ T i , and Z i = Z ◦ T i . We obtain that S n = M n + Z 1 − Z n+1 , 5.35 where M n = P n j=1 D j . We first bound up E f S n − f M n by using the following lemma Lemma 5.2. Let p ∈]2, 3] and r ∈ [p − 2, p]. Let X i i ∈Z be a stationary sequence of centered random variables in L 2 ∨r . Assume that S n = M n + R n where M n − M n −1 n 1 is a strictly stationary sequence of martingale differences in L 2 ∨r , and R n is such that ER n = 0. Let nσ 2 = EM 2 n , nσ 2 n = ES 2 n and α n = σ n σ. 1. If r ∈ [p − 2, 1] and E|R n | r = On r+2−p2 , then ζ r P S n , P M n = On r+2−p2 . 2. If r ∈]1, 2] and kR n k r = On 3−p2 , then ζ r P S n , P M n = On r+2−p2 . 3. If r ∈]2, p], σ 2 0 and kR n k r = On 3−p2 , then ζ r P S n , P α n M n = On r+2−p2 . 4. If r ∈]2, p], σ 2 = 0 and kR n k r = On r+2−p2r , then ζ r P S n , G n σ 2 n = On r+2−p2 . Remark 5.1. All the assumptions on R n in items 1, 2, 3 and 4 of Lemma 5.2 are satisfied as soon as sup n kR n k p ∞. 1001 Proof of Lemma 5.2. For r ∈]0, 1], ζ r P S n , P M n ≤ E|R n | r , which implies item 1. If f ∈ Λ r with r ∈]1, 2], from the Taylor integral formula and since ER n = 0, we get E f S n − f M n = E R n f ′ M n − f ′ 0 + Z 1 f ′ M n + tR n − f ′ M n d t . Using that | f ′ x − f ′ y| ≤ |x − y| r −1 and applying Hölder’s inequality, it follows that E f S n − f M n ≤ kR n k r k f ′ M n − f ′ 0k r r−1 + kR n k r r ≤ kR n k r kM n k r −1 r + kR n k r r . Since kM n k r ≤ kM n k 2 = p n σ, we infer that ζ r P S n , P M n = On r+2−p2 . Now if f ∈ Λ r with r ∈]2, p] and if σ 0, we define g by gt = f t − t f ′ 0 − t 2 f ′′ 02 . The function g is then also in Λ r and is such that g ′ 0 = g ′′ 0 = 0. Since α 2 n E M 2 n = ES 2 n , we have E f S n − f α n M n = EgS n − gα n M n . 5.36 Now from the Taylor integral formula at order two, setting ˜ R n = R n + 1 − α n M n , E gS n − gα n M n = E˜ R n g ′ α n M n + 1 2 E ˜ R n 2 g ′′ α n M n + E ˜ R n 2 Z 1 1 − tg ′′ α n M n + t ˜ R n − g ′′ α n M n d t . 5.37 Note that, since g ′ 0 = g ′′ 0 = 0, one has E ˜ R n g ′ α n M n = E ˜ R n α n M n Z 1 g ′′ tα n M n − g ′′ 0d t Using that |g ′′ x − g ′′ y| ≤ |x − y| r −2 and applying Hölder’s inequality in 5.37, it follows that E gS n − gα n M n ≤ 1 r − 1 E |˜R n ||α n M n | r −1 + 1 2 k˜R n k 2 r kg ′′ α n M n k r r−2 + 1 2 k˜R n k r r ≤ 1 r − 1 α r −1 n k˜R n k r kM n k r −1 r + 1 2 α r −2 n k˜R n k 2 r kM n k r −2 r + 1 2 k˜R n k r r . Now α n = O1 and k˜R n k r ≤ kR n k r + |1 − α n |kM n k r . Since |kS n k 2 − kM n k 2 | ≤ kR n k 2 , we infer that |1 − α n | = On 2−p2 . Hence, applying Burkhölder’s inequality for martingales, we infer that k˜R n k r = On 3−p2 , and consequently ζ r P S n , P α n M n = On r+2−p2 . If σ 2 = 0, then S n = R n . Let Y be a N 0, 1 random variable. Using that E f S n − f p n σ n Y = EgR n − g p n σ n Y and applying again Taylor’s formula, we obtain that sup f ∈Λ r |E f S n − f p n σ n Y | ≤ 1 r − 1 k¯R n k r k p n σ n Y k r −1 r + 1 2 k¯R n k 2 r k p n σ n Y k r −2 r + 1 2 k¯R n k r r , 1002 where ¯ R n = R n − p n σ n Y . Since p n σ n = kR n k 2 ≤ kR n k r and since kR n k r = On r+2−p2r , we infer that p n σ n = On r+2−p2r and that k¯R n k r = On r+2−p2r . The result follows. ƒ By 5.35, we can apply Lemma 5.2 with R n := Z 1 − Z n+1 . Then for p − 2 ≤ r ≤ 2, the result follows if we prove that under 3.1 and 3.2, M n satisfies the conclusion of Theorem 2.1. Now if 2 r ≤ p and σ 2 0, we first notice that ζ r P α n M n , G n σ 2 n = α r n ζ r P M n , G n σ 2 . Since α n = O1, the result will follow by Item 3 of Lemma 5.2, if we prove that under 3.1 and 3.2, M n satisfies the conclusion of Theorem 2.1. We shall prove that X n ≥1 1 n 3 −p2 kEM 2 n |F − EM 2 n k p 2 ∞ . 5.38 In this way, according to Remark 2.1, both 2.1 and 2.2 will be satisfied. Suppose that we can show that X n ≥1 1 n 3 −p2 kEM 2 n |F − ES 2 n |F k p 2 ∞ , 5.39 then by taking into account the condition 3.2, 5.38 will follow. Indeed, it suffices to notice that 5.39 also entails that X n ≥1 1 n 3 −p2 |ES 2 n − EM 2 n | ∞ , 5.40 and to write that kEM 2 n |F − EM 2 n k p 2 ≤ kEM 2 n |F − ES 2 n |F k p 2 +kES 2 n |F − ES 2 n k p 2 + |ES 2 n − EM 2 n | . Hence, it remains to prove 5.39. Since S n = M n + Z 1 − Z n+1 , and since Z i = Z ◦ T i is in L p , 5.39 will be satisfied provided that X n ≥1 1 n 3 −p2 kS n Z 1 − Z n+1 k p 2 ∞ . 5.41 Notice that kS n Z 1 − Z n+1 k p 2 ≤ kM n k p kZ 1 − Z n+1 k p + kZ 1 − Z n+1 k 2 p . From Burkholder’s inequality, kM n k p = O p n and from 3.1, sup n kZ 1 − Z n+1 k p ∞. Conse- quently 5.41 is satisfied for any p in ]2, 3[.

5.3 Proof of Theorem 3.2

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52