Proof of Theorem 2.1 getdoc6e81. 348KB Jun 04 2011 12:04:30 AM

5.1 Proof of Theorem 2.1

We prove Theorem 2.1 in the case σ = 1. The general case follows by dividing the random variables by σ. Since ζ r P aX , P aY = |a| r ζ r P X , P Y , it is enough to bound up ζ r P S n , G n . We first give an upper bound for ζ p,N := ζ p P S 2N , G 2 N . Proposition 5.1. Let X i i ∈Z be a stationary martingale differences sequence in L p for p in ]2, 3]. Let M p = E|X | p . Then for any natural integer N , 2 −2Np ζ 2 p p,N ≤ M p + 1 2 p 2 N X K=0 2 Kp 2−2 kZ K k 1,Φ,p 2 p + 2 p ∆ N , 5.1 where Z K = ES 2 2 K |F − ES 2 2 K and ∆ N = P N −1 K=0 2 −2Kp kZ K k p 2 . Proof of Proposition 5.1. The proof is done by induction on N . Let Y i i ∈N be a sequence of N 0, 1-distributed independent random variables, independent of the sequence X i i ∈Z . For m 0, let T m = Y 1 + Y 2 + · · · + Y m . Set S = T = 0. For any numerical function f and m ≤ n, set f n −m x = E f x + T n − T m . Then, from the independence of the above sequences, E f S n − f T n = n X m=1 D m with D m = E f n −m S m −1 + X m − f n −m S m −1 + Y m . 5.2 For any two-times differentiable function g, the Taylor integral formula at order two writes gx + h − gx = g ′ xh + 1 2 h 2 g ′′ x + h 2 Z 1 1 − tg ′′ x + th − g ′′ xd t. 5.3 Hence, for any q in ]2, 3], |gx + h − gx − g ′ xh − 1 2 h 2 g ′′ x| ≤ h 2 Z 1 1 − t|th| q −2 |g| Λ q d t ≤ 1 qq − 1 |h| q |g| Λ q . 5.4 Let D ′ m = E f ′′ n −m S m −1 X 2 m − 1 = E f ′′ n −m S m −1 X 2 m − Y 2 m From 5.4 applied twice with g = f n −m , x = S m −1 and h = X m or h = Y m together with the martingale property, D m − 1 2 D ′ m ≤ 1 pp − 1 | f n −m | Λ p E |X m | p + |Y m | p . Now E |Y m | p ≤ p − 1 ≤ p − 1M p . Hence |D m − D ′ m 2| ≤ M p | f n −m | Λ p 5.5 Assume now that f belongs to Λ p . Then the smoothed function f n −m belongs to Λ p also, so that | f n −m | Λ p ≤ 1. Hence, summing on m, we get that E f S n − f T n ≤ nM p + D ′ 2 where D ′ = D ′ 1 + D ′ 2 + · · · + D ′ n . 5.6 Suppose now that n = 2 N . To bound up D ′ , we introduce a dyadic scheme. 994 Notation 5.2. Set m = m − 1 and write m in basis 2: m = P N i=0 b i 2 i with b i = 0 or b i = 1 note that b N = 0. Set m L = P N i=L b i 2 i , so that m N = 0. Let I L,k =]k2 L , k + 12 L ] ∩ N note that I N ,1 =]2 N , 2 N +1 ], U k L = P i ∈I L,k X i and ˜ U k L = P i ∈I L,k Y i . For the sake of brevity, let U L = U L and ˜ U L = ˜ U L . Since m N = 0, the following elementary identity is valid D ′ m = N −1 X L=0 E f ′′ n −1−m L S m L − f ′′ n −1−m L+1 S m L+1 X 2 m − 1 . Now m L 6= m L+1 only if b L = 1, then in this case m L = k2 L with k odd. It follows that D ′ = N −1 X L=0 X k ∈IN−L,0 k odd E f ′′ n −1−k2 L S k2 L − f ′′ n −1−k−12 L S k−12 L X {m:m L =k2 L } X 2 m − σ 2 . 5.7 Note that {m : m L = k2 L } = I L,k . Now by the martingale property, E k2 L X i ∈I L,k X 2 i − σ 2 = E k2 L U k L 2 − EU k L 2 := Z k L . Consequently D ′ = N −1 X L=0 X k ∈IN−L,0 k odd E f ′′ n −1−k2 L S k2 L − f ′′ n −1−k−12 L S k−12 L Z k L = N −1 X L=0 X k ∈IN−L,0 k odd E f ′′ n −1−k2 L S k2 L − f ′′ n −1−k2 L S k−12 L + T k2 L − T k−12 L Z k L , 5.8 since X i i ∈N and Y i i ∈N are independent. By using 1.2, we get that D ′ ≤ N −1 X L=0 X k ∈IN−L,0 k odd E |U k−1 L − ˜ U k−1 L | p −2 |Z k L | . From the stationarity of X i i ∈N and the above inequality, D ′ ≤ 1 2 N −1 X K=0 2 N −K E |U K − ˜ U K | p −2 |Z 1 K |. 5.9 Now let V K be the N 0, 2 K -distributed random variable defined from U K via the quantile transfor- mation, that is V K = 2 K 2 Φ −1 F K U K − 0 + δ K F K U K − F K U K − 0 where F K denotes the d.f. of U K , and δ K is a sequence of independent r.v.’s uniformly distributed on [0, 1], independent of the underlying random variables. Now, from the subadditivity of x → x p −2 , |U K − ˜ U K | p −2 ≤ |U K − V K | p −2 + |V K − ˜ U K | p −2 . Hence E |U K − ˜ U K | p −2 |Z 1 K | ≤ kU K − V K k p −2 p kZ 1 K k p 2 + E|V K − ˜ U K | p −2 |Z 1 K | . 5.10 995 By definition of V K , the real number kU K − V K k p is the so-called Wasserstein distance of order p between the law of U K and the N 0, 2 K normal law. Therefrom, by Theorem 3.1 of Rio 2007 which improves the constants given in Theorem 1 of Rio 1998, we get that, for p ∈]2, 3], kU K − V K k p ≤ 22p − 1ζ p,K 1 p ≤ 24ζ p,K 1 p . 5.11 Now, since V K and ˜ U K are independent, their difference has the N 0, 2 K+1 distribution. Note that if Y is a N 0, 1-distributed random variable, Q |Y | p −2 u = Φ −1 1 − u2 p −2 . Hence, by Fréchet’s inequality 1957 see also Inequality 1.11b page 9 in Rio 2000, and by definition of the norm k . k 1,Φ,p , E |V K − ˜ U K | p −2 |Z 1 K | ≤ 2 K+1p2−1 kZ K k 1,Φ,p . 5.12 From 5.10, 5.11 and 5.12, we get that E |U K − ˜ U K | p −2 |Z 1 K | ≤ 2 p −4p ζ p−2p p,K kZ K k p 2 + 2 K+1p2−1 kZ K k 1,Φ,p . 5.13 Then, from 5.6, 5.9 and 5.13, we get 2 −N ζ p,N ≤ M p + 2 p 2−3 ∆ ′ N + 2 p −2−4p N −1 X K=0 2 −K ζ p−2p p,K kZ K k p 2 , where ∆ ′ N = P N −1 K=0 2 Kp 2−2 kZ K k 1,Φ,p . Consequently we get the induction inequality 2 −N ζ p,N ≤ M p + 1 2 p 2 ∆ ′ N + N −1 X K=0 2 −K ζ p−2p p,K kZ K k p 2 . 5.14 We now prove 5.1 by induction on N . First by 5.6 applied with n = 1, one has ζ p,0 ≤ M p , since D ′ 1 = f ′′ 0EX 2 1 − 1 = 0. Assume now that ζ p,L satisfies 5.1 for any L in [0, N − 1]. Starting from 5.14, using the induction hypothesis and the fact that ∆ ′ K ≤ ∆ ′ N , we get that 2 −N ζ p,N ≤ M p + 1 2 p 2 ∆ ′ N + N −1 X K=0 2 −2Kp kZ K k p 2 M p + 1 2 p 2 ∆ ′ N 2 p + 2 p ∆ K p 2−1 . Now 2 −2Kp kZ K k p 2 = ∆ K+1 − ∆ K . Consequently 2 −N ζ p,N ≤ M p + 1 2 p 2 ∆ ′ N + Z ∆ N M p + 1 2 p 2 ∆ ′ N 2 p + 2 p x p 2−1 d x , which implies 5.1 for ζ p,N . ƒ In order to prove Theorem 2.1, we will also need a smoothing argument. This is the purpose of the lemma below. Lemma 5.1. Let S and T be two centered and square integrable random variables with the same variance. For any r in ]0, p], ζ r P S , P T ≤ 2ζ r P S ∗ G 1 , P T ∗ G 1 + 4 p 2. 996 Proof of Lemma 5.1. Throughout the sequel, let Y be a N 0, 1-distributed random variable, inde- pendent of the σ-field generated by S, T . For r ≤ 2, since ζ r is an ideal metric with respect to the convolution, ζ r P S , P T ≤ ζ r P S ∗ G 1 , P T ∗ G 1 + 2ζ r δ , G 1 ≤ ζ r P S ∗ G 1 , P T ∗ G 1 + 2E|Y | r which implies Lemma 5.1 for r ≤ 2. For r 2, from 5.4, for any f in Λ r , f S − f S + Y + f ′ SY − 1 2 f ′′ SY 2 ≤ 1 rr − 1 |Y | r . Taking the expectation and noting that E |Y | r ≤ r − 1 for r in ]2, 3], we infer that E f S − f S + Y − 1 2 f ′′ S ≤ 1 r . Obviously this inequality still holds for T instead of S and − f instead of f , so that adding the so obtained inequality, E f S − f T ≤ E f S + Y − f T + Y + 1 2 E f ′′ S − f ′′ T + 1. Since f ′′ belongs to Λ r −2 , it follows that ζ r P S , P T ≤ ζ r P S ∗ G 1 , P T ∗ G 1 + 1 2 ζ r −2 P S , P T + 1. Now r − 2 ≤ 1. Hence ζ r −2 P S , P T = W r −2 P S , P T ≤ W r P S , P T r −2 . Next, by Theorem 3.1 in Rio 2007, W r P S , P T ≤ 32ζ r P S , P T 1 r . Furthermore 32ζ r P S , P T 1 −2r ≤ ζ r P S , P T as soon as ζ r P S , P T ≥ 2 5r2−5 . This condition holds for any r in ]2, 3] if ζ r P S , P T ≥ 4 p 2. Then, from the above inequalities ζ r P S , P T ≤ ζ r P S ∗ G 1 , P T ∗ G 1 + 1 2 ζ r P S , P T + 1, which implies Lemma 5.1. ƒ We go back to the proof of Theorem 2.1. Let n ∈]2 N , 2 N +1 ] and ℓ = n − 2 N . The main step is then to prove the inequalities below: for r ≥ p − 2 and r, p 6= 1, 3, for some εN tending to zero as N tends to infinity, ζ r P S n , G n ≤ c r,p 2 N r −p2 ζ p P S ℓ , G ℓ + C2 N r+2 −p2 + 2 N r −p2+2p εN ζ p P S ℓ , G ℓ p−2p 5.15 and for r = 1 and p = 3, ζ 1 P S n , G n ≤ CN + 2 −N ζ 3 P S ℓ , G ℓ + 2 −N3 ζ 3 P S ℓ , G ℓ 1 3 . 5.16 997 Assuming that 5.15 and 5.16 hold, we now complete the proof of Theorem 2.1. Let ζ ∗ p,N = sup n ≤2 N ζ p P S n , G n , we infer from 5.15 applied to r = p that ζ ∗ p,N +1 ≤ ζ ∗ p,N + C2 N + 2 2N p εN ζ ∗ p,N p−2p . Let N be such that C εN ≤ 12 for N ≤ N , and let K ≥ 1 be such that ζ ∗ p,N ≤ K2 N . Choosing K large enough such that K ≥ 2C, we can easily prove by induction that ζ ∗ p,N ≤ K2 N for any N ≥ N . Hence Theorem 2.1 is proved in the case r = p. For r in [p − 2, p[, Theorem 2.1 follows by taking into account the bound ζ ∗ p,N ≤ K2 N , valid for any N ≥ N , in the inequalities 5.15 and 5.16. We now prove 5.15 and 5.16. We will bound up ζ ∗ p,N by induction on N . For n ∈]2 N , 2 N +1 ] and ℓ = n − 2 N , we notice that ζ r P S n , G n ≤ ζ r P S n , P S ℓ ∗ G 2 N + ζ r P S ℓ ∗ G 2 N , G ℓ ∗ G 2 N . Let φ t be the density of the law N 0, t 2 . With the same notation as in the proof of Proposition 5.1, we have ζ r P S ℓ ∗ G 2 N , G ℓ ∗ G 2 N = sup f ∈Λ r E f 2 N S ℓ − f 2 N T ℓ ≤ | f ∗ φ 2 N 2 | Λ p ζ p P S ℓ , G ℓ . Applying Lemma 6.1, we infer that ζ r P S n , G n ≤ ζ r P S n , P S ℓ ∗ G 2 N + c r,p 2 N r −p2 ζ p P S ℓ , G ℓ . 5.17 On the other hand, setting ˜ S ℓ = X 1 −ℓ + · · · + X , we have that S n is distributed as ˜ S ℓ + S 2 N and, S ℓ + T 2 N as ˜ S ℓ + T 2 N . Let Y be a N 0, 1-distributed random variable independent of X i i ∈Z and Y i i ∈Z . Using Lemma 5.1, we then derive that ζ r P S n , P S ℓ ∗ G 2 N ≤ 4 p 2 + 2 sup f ∈Λ r E f ˜ S ℓ + S 2 N + Y − f ˜S ℓ + T 2 N + Y . 5.18 Let D ′ m = E f ′′ 2 N −m+1 ˜ S ℓ + S m −1 X 2 m − 1. We follow the proof of Proposition 5.1. From the Taylor expansion 5.3 applied twice with g = f 2 N −m+1 , x = ˜ S ℓ + S m −1 and h = X m or h = Y m together with the martingale property, we get that E f ˜ S ℓ + S 2 N + Y − f ˜S ℓ + T 2 N + Y = 2 N X m=1 E f 2 N −m+1 ˜ S ℓ + S m −1 + X m − f 2 N −m+1 ˜ S ℓ + S m −1 + Y m = D ′ 1 + · · · + D ′ 2 N 2 + R 1 + · · · + R 2 N , 5.19 where, as in 5.5, R m ≤ M p | f 2 N −m+1 | Λ p . 5.20 In the case r = p − 2, we will need the more precise upper bound R m ≤ E X 2 m k f ′′ 2 N −m+1 k ∞ ∧ 1 6 k f 3 2 N −m+1 k ∞ |X m | + 1 6 k f 3 2 N −m+1 k ∞ E |Y m | 3 , 5.21 998 which is derived from the Taylor formula at orders two and three. From 5.20 and Lemma 6.1, we have that R := R 1 + · · · + R 2 N = O2 N r −p+22 if r p − 2, and R = ON if r, p = 1, 3 . 5.22 It remains to consider the case r = p − 2 and r 1. Applying Lemma 6.1, we get that for i ≥ 2, k f i 2 N −m+1 k ∞ ≤ c r,i 2 N − m + 1 r−i2 . 5.23 It follows that 2 N X m=1 E X 2 m k f ′′ 2 N −m+1 k ∞ ∧ k f 3 2 N −m+1 k ∞ |X m | ≤ C ∞ X m=1 1 m 1 −r2 E X 2 1 ∧ |X | p m ≤ CE [X 2 ] X m=1 X 2 m 1 −r2 + ∞ X m=[X 2 ]+1 |X | 3 m 3−r2 . Consequently for r = p − 2 and r 1, R 1 + · · · + R 2 N ≤ CM p + E|Y | 3 . 5.24 We now bound up D ′ 1 + · · · + D ′ 2 N . Using the dyadic scheme as in the proof of Proposition 5.1, we get that D ′ m = N −1 X L=0 E f ′′ 2 N −m L ˜ S ℓ + S m L − f ′′ 2 N −m L+1 ˜ S ℓ + S m L+1 X 2 m − 1 + E f ′′ 2 N ˜ S ℓ X 2 m − 1 := D ′′ m + E f ′′ 2 N ˜ S ℓ X 2 m − 1 . Notice first that 2 N X m=1 E f ′′ 2 N ˜ S ℓ X 2 m − 1 = E f ′′ 2 N ˜ S ℓ − f ′′ 2 N T ℓ Z N . 5.25 Since f belongs to Λ r i.e. | f | Λ r ≤ 1, we infer from Lemma 6.1 that | f i | Λ p ≤ C i r−p2 which means exactly that | f ′′ i x − f ′′ i y| ≤ C i r−p2 |x − y| p −2 . 5.26 Starting from 5.25 and using 5.26 with i = 2 N , it follows that 2 N X m=1 E f ′′ 2 N ˜ S ℓ X 2 m − 1 ≤ C2 N r −p2 E |˜S ℓ − T ℓ | p −2 |Z N | . Proceeding as to get 5.13 that is, using similar upper bounds as in 5.10, 5.11 and 5.12, we obtain that E |˜S ℓ − T ℓ | p −2 |Z N | ≤ 2 p −4p ζ p P S ℓ , G ℓ p−2p kZ N k p 2 + 2ℓ p 2−1 kZ N k 1,Φ,p . 999 Using Remark 2.6, 2.1 and 2.2 entail that kZ N k p 2 = o2 2N p and kZ N k 1,Φ,p = o2 N 2 −p2 . Hence, for some εN tending to 0 as N tends to infinity, one has 2 N X m=1 D ′ m ≤ 2 N X m=1 D ′′ m + CεN 2 N r −p2+2p ζ p P S ℓ , G ℓ p−2p + 2 N r+2 −p2 . 5.27 Next, proceeding as in the proof of 5.8, we get that 2 N X m=1 D ′′ m ≤ N −1 X L=0 X k ∈IN−L,0 k odd E f ′′ 2 N −k2 L ˜ S ℓ + S k2 L − f ′′ 2 N −k2 L ˜ S ℓ + S k−12 L + T k2 L − T k−12 L Z k L . 5.28 Let r p − 2 or r, p = 1, 3. Using 5.26 with i = 2 N − k2 L , 5.28, and the stationarity of X i i ∈N , we infer that 2 N X m=1 D ′′ m ≤ C N −1 X L=0 X k ∈IN−L,0 k odd 2 N − k2 L r−p2 E |U L − ˜ U L | p −2 Z 1 L . It follows that 2 N X m=1 D ′′ m ≤ C2 N r+2−p2 N X L=0 2 −L E U L − ˜ U L p −2 Z 1 L if r p − 2, 5.29 2 N X m=1 D ′′ m ≤ C N N X L=0 2 −L E U L − ˜ U L Z 1 L if r = 1 and p = 3. 5.30 In the case r = p − 2 and r 1, we have 2 N X m=1 D ′′ m ≤ C N −1 X L=0 X k ∈IN−L,0 k odd E k f ′′ 2 N −k2 L k ∞ ∧ k f ′′′ 2 N −k2 L k ∞ U L − ˜ U L Z 1 L . Applying 5.23 to i = 2 and i = 3, we obtain 2 N X m=1 D ′′ m ≤ C N X L=0 2 r−2L2 E Z 1 L 2 N −L X k=1 k r−22 1 ∧ 1 2 L 2 p k U L − ˜ U L , Proceeding as to get 5.24, we have that 2 N −L X k=1 k r−22 1 ∧ 1 2 L 2 p k U L − ˜ U L ≤ ∞ X k=1 k r−22 1 ∧ 1 2 L 2 p k U L − ˜ U L ≤ C2 −Lr2 |U L − ˜ U L r . It follows that 2 N X m=1 D ′′ m ≤ C N X L=0 2 −L E U L − ˜ U L r Z 1 L if r = p − 2 and r 1. 5.31 1000 Now by Remark 2.6, 2.1 and 2.2 are respectively equivalent to X K ≥0 2 Kp 2−2 kZ K k 1,Φ,p ∞ , and X K ≥0 2 −2Kp kZ K k p 2 ∞ . Next, by Proposition 5.1, ζ p,K = O2 K under 2.1 and 2.2. Therefrom, taking into account the inequality 5.13, we derive that under 2.1 and 2.2, 2 −L E U L − ˜ U L p −2 Z 1 L ≤ C2 −2Lp kZ L k p 2 + C2 Lp 2−2 kZ L k 1,Φ,p . 5.32 Consequently, combining 5.32 with the upper bounds 5.29, 5.30 and 5.31, we obtain that 2 N X m=1 D ′′ m = ¨ O2 N r+2 −p2 if r ≥ p − 2 and r, p 6= 1, 3 ON if r = 1 and p = 3. 5.33 From 5.17, 5.18, 5.19, 5.22, 5.24, 5.27 and 5.33, we obtain 5.15 and 5.16.

5.2 Proof of Theorem 3.1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52