Linear processes and functions of linear processes

which holds as soon as P τ = n = On −1−p2 log n −p2−ε , where P is the probability of the chain starting from 0, and τ = inf{n 0, X n = 0}. Now P τ = n = 1 − a n Π n −1 i=1 a i for n ≥ 2. Consequently, if a i = 1 − p 2i 1 + 1 + ε log i for i large enough , the condition 4.2 is satisfied and the conclusion of Theorem 2.1 holds. Remark 4.2. If f is bounded and K f 6= 0, the central limit theorem may fail to hold for S n = P n i=1 f Y i − E f Y i . We refer to the Example 2, page 321, given by Davydov 1973, where S n properly normalized converges to a stable law with exponent strictly less than 2. Proof of Proposition 4.1. Let B p F be the set of F -measurable random variables such that kZk p ≤ 1. We first notice that kEX 2 k |F − σ 2 k p 2 = sup Z ∈B p p−2 F CovZ, X 2 k . Applying Rio’s covariance inequality 1993, we get that kEX 2 k |F − σ 2 k p 2 ≤ 2 Z α 1 k Q p udu 2 p , which shows that the convergence of the second series in 4.1 implies 2.2. Now, from Fréchet 1957, we have that kEX 2 k |F − σ 2 k 1,Φ,p = sup E1 ∨ |Z| p −2 | EX 2 k |F − σ 2 | , Z F -measurable, Z ∼ N 0, 1 . Hence, setting ǫ k = signEX 2 k |F − σ 2 , kEX 2 k |F − σ 2 k 1,Φ,p = sup Covǫ k 1 ∨ |Z| p −2 , X 2 k , Z F -measurable, Z ∼ N 0, 1 . Applying again Rio’s covariance inequality 1993, we get that kEX 2 k |F − σ 2 k 1,Φ,p ≤ C Z α 1 k 1 ∨ logu −1 p−22 Q 2 udu , which shows that the convergence of the first series in 4.1 implies 2.1.

4.2 Linear processes and functions of linear processes

In what follows we say that the series P i ∈Z a i converges if the two series P i ≥0 a i and P i a i converge. Theorem 4.1. Let a i i ∈Z be a sequence of real numbers in ℓ 2 such that P i ∈Z a i converges to some real A. Let ǫ i i ∈Z be a stationary sequence of martingale differences in L p for p ∈]2, 3]. Let X k = P j ∈Z a j ǫ k − j , and σ 2 n = n −1 E S 2 n . Let b = a −A and b j = a j for j 6= 0. Let A n = P j ∈Z P n k=1 b k − j 2 . If A n = on, then σ 2 n converges to σ 2 = A 2 E ǫ 2 . If moreover ∞ X n=1 1 n 2 −p2 E 1 n n X j=1 ǫ j 2 F − Eǫ 2 p 2 ∞ , 4.3 then we have 985 1. If A n = O1, then ζ 1 P n −12 S n , G σ 2 = On −12 logn, for p = 3, 2. If A n = On r+2−pr , then ζ r P n −12 S n , G σ 2 = On 1 −p2 , for r ∈ [p − 2, 1] and p 6= 3, 3. If A n = On 3 −p , then ζ r P n −12 S n , G σ 2 = On 1 −p2 , for r ∈]1, 2], 4. If A n = On 3 −p , then ζ r P n −12 S n , G σ 2 n = On 1 −p2 , for r ∈]2, p]. Remark 4.3. If the condition given by Heyde 1975 holds, that is ∞ X n=1 X k ≥n a k 2 ∞ and ∞ X n=1 X k ≤−n a k 2 ∞ , 4.4 then A n = O1, so that it satisfies all the conditions of items 1-4. Remark 4.4. Under the additional assumption P i ∈Z |a i | ∞, one has the bound A n ≤ 4B n , where B n = n X k=1 X j ≥k |a j | 2 + X j ≤−k |a j | 2 . 4.5 Proof of Theorem 4.1. We start with the following decomposition: S n = A n X j=1 ǫ j + ∞ X j= −∞ n X k=1 b k − j ǫ j . 4.6 Let R n = P ∞ j= −∞ P n k=1 b k − j ǫ j . Since kR n k 2 2 = A n kǫ k 2 2 and since |σ n − σ| ≤ n −12 kR n k 2 , the fact that A n = on implies that σ n converges to σ. We now give an upper bound for kR n k p . From Burkholder’s inequality, there exists a constant C such that kR n k p ≤ C n ∞ X j= −∞ n X k=1 b k − j 2 ǫ 2 j p 2 o 1 2 ≤ Ckǫ k p p A n . 4.7 According to Remark 2.1, since 4.3 holds, the two conditions 2.1 and 2.2 of Theorem 2.1 are satisfied by the martingale M n = A P n k=1 ǫ k . To conclude the proof, we use Lemma 5.2 given in Section 5.2, with the upper bound 4.7. ƒ Proof of Remarks 4.3 and 4.4. To prove Remark 4.3, note first that A n = n X j=1 − j X l= −∞ a l + ∞ X l=n+1 − j a l 2 + ∞ X i=1 n+i −1 X l=i a l 2 + ∞ X i=1 −i X l= −i−n+1 a l 2 . It follows easily that A n = O1 under 4.4. To prove the bound 4.5, note first that A n ≤ 3B n + ∞ X i=n+1 n+i −1 X l=i |a l | 2 + ∞ X i=n+1 −i X l= −i−n+1 |a l | 2 . 986 Let T i = P ∞ l=i |a l | and Q i = P −i l= −∞ |a l |. We have that ∞ X i=n+1 n+i −1 X l=i |a l | 2 ≤ T n+1 ∞ X i=n+1 T i − T n+i ≤ nT 2 n+1 ∞ X i=n+1 −i X l= −i−n+1 |a l | 2 ≤ Q n+1 ∞ X i=n+1 Q i − Q n+i ≤ nQ 2 n+1 . Since nT 2 n+1 + Q 2 n+1 ≤ B n , 4.5 follows. ƒ In the next result, we shall focus on functions of real-valued linear processes X k = h X i ∈Z a i ǫ k −i − E h X i ∈Z a i ǫ k −i , 4.8 where ǫ i i ∈Z is a sequence of iid random variables. Denote by w h ., M the modulus of continuity of the function h on the interval [ −M, M], that is w h t, M = sup{|hx − h y|, |x − y| ≤ t, |x| ≤ M, | y| ≤ M} . Theorem 4.2. Let a i i ∈Z be a sequence of real numbers in ℓ 2 and ǫ i i ∈Z be a sequence of iid random variables in L 2 . Let X k be defined as in 4.8 and σ 2 n = n −1 E S 2 n . Assume that h is γ-Hölder on any compact set, with w h t, M ≤ C t γ M α , for some C 0, γ ∈]0, 1] and α ≥ 0. If for some p ∈]2, 3], E |ǫ | 2 ∨α+γp ∞ and X i ≥1 i p 2−1 X | j|≥i a 2 j γ2 ∞, 4.9 then the series P k ∈Z CovX , X k converges to some nonnegative σ 2 , and 1. ζ 1 P n −12 S n , G σ 2 = On −12 log n, for p = 3, 2. ζ r P n −12 S n , G σ 2 = On 1 −p2 for r ∈ [p − 2, 2] and r, p 6= 1, 3, 3. ζ r P n −12 S n , G σ 2 n = On 1 −p2 for r ∈]2, p]. Proof of Theorem 4.2. Theorem 4.2 is a consequence of the following proposition: Proposition 4.2. Let a i i ∈Z , ǫ i i ∈Z and X i i ∈Z be as in Theorem 4.2. Let ǫ ′ i i ∈Z be an independent copy of ǫ i i ∈Z . Let V = P i ∈Z a i ǫ −i and M 1,i = |V | ∨ X j i a j ǫ − j + X j ≥i a j ǫ ′ − j and M 2,i = |V | ∨ X j i a j ǫ ′ − j + X j ≥i a j ǫ − j . If for some p ∈]2, 3], X i ≥1 i p 2−1 w h X j ≥i a j ǫ − j , M 1,i p ∞ and X i ≥1 i p 2−1 w h X j −i a j ǫ − j , M 2, −i p ∞, 4.10 then the conclusions of Theorem 4.2 hold. 987 To prove Theorem 4.2, it remains to check 4.10. We only check the first condition. Since w h t, M ≤ C t γ M α and the random variables ǫ i are iid, we have w h X j ≥i a j ǫ − j , M 1,i p ≤ C X j ≥i a j ǫ − j γ |V | α p + C X j ≥i a j ǫ − j γ p k|V | α k p , so that w h X j ≥i a j ǫ − j , M 1,i p ≤ C 2 α X j ≥i a j ǫ − j α+γ p + X j ≥i a j ǫ − j γ p k|V | α k p + 2 α X j i a j ǫ − j α p . From Burkholder’s inequality, for any β 0, X j ≥i a j ǫ − j β p = X j ≥i a j ǫ − j β β p ≤ K X j ≥i a 2 j β2 kǫ k β 2 ∨β p . Applying this inequality with β = γ or β = α + γ, we infer that the first part of 4.10 holds under 4.9. The second part can be handled in the same way. ƒ Proof of Proposition 4.2. Let F i = σǫ k , k ≤ i. We shall first prove that the condition 3.2 of Theorem 3.1 holds. We write kES 2 n |F − ES 2 n k p 2 ≤ 2 n X i=1 n −i X k=0 kEX i X k+i |F − EX i X k+i k p 2 ≤ 4 n X i=1 n X k=i kEX i X k+i |F k p 2 + 2 n X i=1 i X k=1 kEX i X k+i |F − EX i X k+i k p 2 . We first control the second term. Let ǫ ′ be an independent copy of ǫ, and denote by E ǫ · the conditional expectation with respect to ǫ. Define Y i = X j i a j ǫ i − j , Y ′ i = X j i a j ǫ ′ i − j , Z i = X j ≥i a j ǫ i − j , and Z ′ i = X j ≥i a j ǫ ′ i − j . Taking F ℓ = σǫ i , i ≤ ℓ, and setting h = h − Eh P i ∈Z a i ǫ i , we have kEX i X k+i |F − EX i X k+i k p 2 = E ǫ h Y ′ i + Z i h Y ′ k+i + Z k+i − E ǫ h Y ′ i + Z ′ i h Y ′ k+i + Z ′ k+i p 2 . Applying first the triangle inequality, and next Hölder’s inequality, we get that kEX i X k+i |F − EX i X k+i k p 2 ≤ kh Y ′ k+i + Z k+i k p kh Y ′ i + Z i − h Y ′ i + Z ′ i k p + kh Y ′ i + Z ′ i k p kh Y ′ k+i + Z k+i − h Y ′ k+i + Z ′ k+i k p . 988 Let m 1,i = |Y ′ i + Z i | ∨ |Y ′ i + Z ′ i |. Since w h t, M = w h t, M , it follows that kEX i X k+i |F − EX i X k+i k p 2 ≤ kh Y ′ k+i + Z k+i k p w h X j ≥i a j ǫ i − j − ǫ ′ i − j , m 1,i p + kh Y ′ i + Z ′ i k p w h X j ≥k+i a j ǫ k+i − j − ǫ ′ k+i − j , m 1,k+i p . By subadditivity, we obtain that w h X j ≥i a j ǫ i − j − ǫ ′ i − j , m 1,i p ≤ w h X j ≥i a j ǫ i − j , m 1,i p + w h X j ≥i a j ǫ ′ i − j , m 1,i p . Since the three couples P j ≥i a j ǫ i − j , m 1,i , P j ≥i a j ǫ ′ i − j , m 1,i and P j ≥i a j ǫ − j , M 1,i are identically distributed, it follows that w h X j ≥i a j ǫ i − j − ǫ ′ i − j , m 1,i p ≤ 2 w h X j ≥i a j ǫ − j , M 1,i p . In the same way w h X j ≥k+i a j ǫ k+i − j − ǫ ′ k+i − j , m 1,k+i p ≤ 2 w h X j ≥k+i a j ǫ − j , M 1,k+i p . Consequently X n ≥1 1 n 3 −p2 n X i=1 i X k=1 kEX i X k+i |F − EX i X k+i k p 2 ∞ provided that the first condition in 4.10 holds. We turn now to the control of P n i=1 P n k=i kEX i X k+i |F k p 2 . We first write that kEX i X k+i |F k p 2 ≤ kE X i − EX i |F i+[k 2] X k+i |F k p 2 + kE EX i |F i+[k 2] X k+i |F k p 2 ≤ kX k p kX i − EX i |F i+[k 2] k p + kX k p kEX k+i |F i+[k 2] k p . Let bk = k − [k2]. Since kEX k+i |F i+[k 2] k p = kEX bk |F k p , we have that kEX k+i |F i+[k 2] k p = E ǫ h X j bk a j ǫ ′ bk − j + X j ≥bk a j ǫ bk − j − h X j bk a j ǫ ′ bk − j + X j ≥bk a j ǫ ′ bk − j p . Using the same arguments as before, we get that kEX k+i |F i+[k 2] k p = kEX bk |F k p ≤ 2 w h X j ≥bk a j ǫ − j , M 1,bk p . 4.11 In the same way, X i − EX i |F i+[k 2] p = E ǫ h X j −[k2] a j ǫ i − j + X j ≥−[k2] a j ǫ i − j − h X j −[k2] a j ǫ ′ i − j + X j ≥−[k2] a j ǫ i − j p . 989 Let m 2,i,k = X j ∈Z a i ǫ i − j ∨ X j −[k2] a j ǫ ′ i − j + X j ≥−[k2] a j ǫ i − j . Using again the subbadditivity of t → w h t, M , and the fact that P j −[k2] a j ǫ i − j , m 2,i,k , P j −[k2] a j ǫ ′ i − j , m 2,i,k and P j −[k2] a j ǫ − j , M 2, −[k2] are identically distributed, we obtain that X i − EX i |F i+[k 2] p = X −[k2] − EX −[k2] |F p ≤ 2 w h X j −[k2] a j ǫ − j , M 2, −[k2] p . 4.12 Consequently X n ≥1 1 n 3 −p2 n X i=1 n X k=i kEX i X k+i |F k p 2 ∞ provided that 4.10 holds. This completes the proof of 3.2. Using the bounds 4.11 and 4.12 taking bk = n in 4.11 and [k 2] = n in 4.12, we see that the condition 3.1 of Theorem 3.1 and also the condition 3.4 of Theorem 3.2 in the case p = 3 holds under 4.10. ƒ

4.3 Functions of

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52