Single step estimates getdoc9b2f. 332KB Jun 04 2011 12:04:44 AM

We will introduce the following operators to break up the evolution into smaller pieces: L ℓ,λ = A1, λ4n 1 2 p ℓ , ˆ L ℓ,λ = A1, λ4n 1 2 s ℓ , S ℓ,λ = L ˆ T ℓ ℓ,λ ˆ T −1 ℓ A p ℓ p ℓ+1 1 + X ℓ p ℓ −1 , 0 ˆ T ℓ , 41 ˆ S ℓ,λ = ˆ L T ℓ ℓ,λ € T ℓ −1 A1 + Y ℓ s ℓ −1 , 0 T ℓ+1 Š . Then ϕ ℓ+1 = ϕ ℓ∗ L ˆ T ℓ ℓ ˆ Q ℓ € S ℓ,0 Š ˆ Q ℓ ˆ L T ℓ ℓ Q ℓ €ˆ S ℓ,0 Š Q ℓ = ϕ ℓ∗ € S ℓ,λ Š ˆ Q ℓ €ˆ S ℓ,λ Š Q ℓ . 42 We also introduce the relative regularized phase function and target phase function: α ℓ,λ := ϕ ℓ,λ − ϕ ℓ,0 , α ⊙ ℓ,λ := ϕ ⊙ ℓ,λ − ϕ ⊙ ℓ,0 . 43 5 SDE limit for the phase function Let F ℓ denote the σ-field generated by ϕ j, λ , j ≤ ℓ − 1. Then ϕ ℓ,λ is a Markov chain in ℓ with respect to F ℓ . Indeed, the relation 42 shows that ϕ ℓ+1,λ = h ℓ,λ ϕ ℓ+1,λ , X ℓ , Y ℓ where h ℓ,λ is a deterministic function depending on ℓ and λ. Since X ℓ , Y ℓ are independent of F ℓ it follows that E ” ϕ ℓ+1,λ |F ℓ — = E ” ϕ ℓ+1,λ |ϕ ℓ,λ — . We will show that this Markov chain converges to a diffusion limit after proper normalization. In order to do this we will estimate E ” ϕ ℓ+1,λ − ϕ ℓ,λ |F ℓ — and E ” ϕ ℓ+1,λ − ϕ ℓ,λ ϕ ℓ+1,λ ′ − ϕ ℓ,λ ′ |F ℓ — using the angular shift lemma, Lemma 12. To simplify the computations we introduce ‘intermediate’ values for the process ϕ ℓ,λ by breaking the evolution operator in 42 into two parts: ϕ ℓ+ 1 2 , λ = ϕ ℓ∗ € S ℓ,λ Š ˆ Q ℓ , F ℓ+ 1 2 = σF ℓ ∪ {ϕ ℓ+ 1 2 , λ }. Note that ϕ ℓ,λ is still a Markov chain if we consider it as a process on the half integers. Remark 13. We would like to note that the ‘half-step’ evolution rules ϕ ℓ,λ → ϕ ℓ+ 1 2 , λ , ϕ ℓ+ 1 2 , λ → ϕ ℓ+1,λ are very similar to the one-step evolution of the phase function ϕ in [13]. Indeed, in [13], the evolution of ϕ is of the type ϕ ℓ+1 = ϕ ℓ∗ €˜ S ℓ,λ Š ˜ Q ℓ where ˜ S is an affine transformation and ˜ Q is a rotation similar to our S, ˆ S and Q, ˆ Q. In our case the evolution of ϕ ℓ+1,λ is the composition of two transformations with similar structure. The main difficulties in our computations are caused by the fact that Q and ˆ Q are rather different which makes the oscillating terms more complicated.

5.1 Single step estimates

Throughout the rest of the proof we will use the notation k = n − ℓ. We will need to rescale the discrete time by n in order to get a limit, we will use t = ℓn and also introduce ˆ st = p 1 − t. 328 We start with the identity p ℓ ℑ ˆ ρ ℓ = s ℓ ℑρ ℓ = È s 2 ℓ − µ 2 n − m + n 2 4 µ 2 n = È n − µ 2 n − m + n 2 4 µ 2 n − ℓ − 1 2 = p n − ℓ = p k = p n ˆ st. Note that this means that ρ ℓ = ± r n − n − 12 n − ℓ − 12 + i r n − ℓ n − ℓ − 12 = ± r n 1 n 1 + k + i È k n 1 + k , 44 ˆ ρ ℓ = r m − n − 12 m − ℓ − 12 + i r n − ℓ m − ℓ − 12 = r m 1 m 1 + k + i È k m 1 + k 45 where the sign in ℜρ ℓ is positive if µ n p m − n and negative otherwise. For the angular shift estimates we need to consider Z ℓ,λ := i. S −1 ℓ,λ − i = ˆ ρ ℓ X ℓ p n ˆ st · p ℓ+1 p ℓ + − λ 4n ˆ st + ˆ ρ ℓ p ℓ+1 − p ℓ p ℓ ℑ ˆ ρ ℓ =: V ℓ + v ℓ , ˆ Z ℓ,λ := i.ˆ S −1 ℓ,λ − i = ρ ℓ Y ℓ p n ˆ st + − λ 4n ˆ st + ρ ℓ+1 − ρ ℓ ℑρ ℓ =: ˆ V ℓ + ˆ v ℓ . 46 Here V ℓ , ˆ V ℓ are the random and v ℓ , ˆ v ℓ are the deterministic parts of the appropriate expressions. We have the following estimates for the deterministic parts by Taylor expansion: v ℓ,λ = v λ t n + Ok −2 , v λ t = − λ 4ˆ st − ˆ ρt 2ptˆ st , |v ℓ,λ | ≤ c k , ˆ v ℓ,λ = ˆ v λ t n + Ok −2 , ˆ v λ t = − λ 4ˆ st + d d t ρt ℑρt , |ˆv ℓ,λ | ≤ c k , where pt = p n t = p m n − t and ρt = ρ n t, ˆ ρt = ˆ ρ n t are defined by equations 44 and 45 with ℓ = n t. For the random terms from 30 we get EV ℓ = E ˆ V ℓ = O k −12 n − ℓ −32 , EV 2 ℓ = 1 n q 1 t + O k −1 n − ℓ −1 , E ˆ V 2 ℓ = 1 n q 2 t + O k −1 n − ℓ −1 , E|V 2 ℓ | = E| ˆ V 2 ℓ | = 1 n q 3 t + O k −1 n − ℓ −1 , E|V d ℓ |, E| ˆ V 2 ℓ | = O k −d2 , d = 3, 4, where the constants in the error term only depend on β and q 1 t = 2 ˆ ρt 2 βˆ st 2 , q 2 t = 2 ρt 2 βˆ st 2 , q 3 t = 2 βˆ st 2 . 47 We introduce the notations ∆ 1 2 f x, λ = f x+ 1 2 , λ − f x, λ , ∆ f x, λ = f x+1, λ − f x, λ and we also set for ℓ ∈ Z + η ℓ = ρ 2 ˆ ρ 2 ρ 2 1 ˆ ρ 2 1 . . . ρ 2 ℓ ˆ ρ 2 ℓ . The following proposition is the analogue of Proposition 22 in [13]. 329 Proposition 14. For ℓ ≤ n we have E ” ∆ 1 2 ϕ ℓ,λ ϕ ℓ,λ = x — = 1 n b 1 λ t + 1 n osc 1 + O k −32 = O k −1 E ” ∆ 1 2 ϕ ℓ,λ ∆ 1 2 ϕ ℓ,λ ′ ϕ ℓ,λ = x, ϕ ℓ,λ ′ = y — = 1 n a 1 t, x, y + 1 n osc 2 + O k −32 E ” ∆ 1 2 ϕ ℓ+ 1 2 , λ ϕ ℓ+ 1 2 , λ = x — = 1 n b 2 λ t + 1 n osc 3 + O k −32 = O k −1 E ” ∆ 1 2 ϕ ℓ+ 1 2 , λ ∆ 1 2 ϕ ℓ+ 1 2 , λ ′ ϕ ℓ+ 1 2 , λ = x, ϕ ℓ+ 1 2 , λ ′ = y — = 1 n a 2 t, x, y + 1 n osc 4 + O k −32 , E ” |∆ 1 2 ϕ ℓ,λ | d ϕ ℓ,λ = x — , E ” |∆ 1 2 ϕ ℓ+ 1 2 , λ | d ϕ ℓ,λ = x — = O k −d2 , d = 2, 3 where t = ℓn , b 1 λ = λ 4ˆ s + ℜ ˆ ρ 2pˆ s + ℑ ˆ ρ 2 2 βˆ s 2 , b 2 λ = λ 4ˆ s − ℜ d d t ρ ℑρ + ℑρ 2 2 βˆ s 2 , a 1 = 1 βˆ s 2 ℜ ” e ix − y — + 1+ ℜ ˆ ρ 2 βˆ s 2 , a 2 = 1 βˆ s 2 ℜ ” e ix − y — + 1 + ℜρ 2 βˆ s 2 . The oscillatory terms are osc 1 = ℜ−v ℓ − iq 1 2e −i x ˆ ρ −2 ℓ η ℓ + ℜie −2i x ˆ ρ −4 ℓ η 2 ℓ q 1 4, osc 2 = q 3 ℜe −i x ˆ ρ −2 ℓ η ℓ + e −i y ˆ ρ −2 ℓ η ℓ 2 + ℜq 1 e −i x ˆ ρ −2 ℓ η ℓ + e −i y ˆ ρ −2 ℓ η ℓ + e −ix+ y ˆ ρ −4 ℓ η 2 ℓ 2, osc 3 = ℜ−ˆv ℓ − iq 2 2e −i x η ℓ + ℜie −2i x η 2 ℓ q 2 4, osc 4 = q 3 ℜe −i x η ℓ + e −i y η ℓ 2 + ℜq 2 e −i x η ℓ + e −i y η ℓ + e −ix+ y η 2 ℓ 2. Proof. We start with the identity ϕ ℓ+ 1 2 , λ − ϕ ℓ,λ = ϕ ℓ+1,λ∗ ˆ Q −1 ℓ − ϕ ℓ,λ∗ ˆ Q −1 ℓ = ϕ ℓ,λ∗ ˆ Q −1 ℓ S ℓ,λ − ϕ ℓ,λ∗ ˆ Q −1 ℓ = ashS ℓ,λ , e i ϕ ℓ,λ ¯ η ℓ ˆ ρ −2 ℓ , −1. Here we used the definition of the angular shift with the fact that S ℓ,λ and any affine transfor- mation will preserve ∞ ∈ H which corresponds to −1 in U. A similar identity can be proved for ∆ 1 2 ϕ ℓ+ 1 2 , λ . The proof now follows exactly the same as in [13], it is a straightforward application of Lemma 12 using the estimates on v ℓ,λ , ˆ v ℓ,λ , V ℓ , ˆ V ℓ .

5.2 The continuum limit

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52