The eigenvalue equations Regularized phase functions

4 Phase functions In this section we introduce the phase functions used to count the eigenvalues.

4.1 The eigenvalue equations

Let s j = p n − j − 12 and p j = p m − j − 12. Conjugating the matrix ˜ A n,m 6 with a 2n × 2n diagonal matrix D = D n with diagonal elements D 1,1 = 1, D 2i,2i = ˜ χ βm−i−1 p β p i i −1 Y ℓ=1 ˜ χ βm−ℓ χ βn−ℓ β p ℓ s ℓ , D 2i+1,2i+1 = i Y ℓ=1 ˜ χ βm−ℓ χ βn−ℓ β p ℓ s ℓ we get the tridiagonal matrix ˜ A D n,m = D −1 ˜ A n,m D: ˜ A D n,m =            p + X p 1 s + Y s 1 p 1 + X 1 ... ... ... p n −1 s n −2 + Y n −2 s n −1 p n −1 + X n −1 p n            29 where X ℓ = ˜ χ 2 βm−ℓ−1 β p ℓ+1 − p ℓ , ≤ ℓ ≤ n − 1, Y ℓ = χ 2 βn−ℓ−1 βs ℓ+1 − s ℓ , ≤ ℓ ≤ n − 2. The first couple of moments of these random variables are explicitly computable using the moment generating function of the χ 2 -distribution and we get the following asymptotics: EX ℓ = O m − ℓ −32 , EX 2 ℓ = 2β + O m − ℓ −1 , EX 4 ℓ = O 1, EY ℓ = O n − ℓ −32 , EY 2 ℓ = 2β + O n − ℓ −1 , EY 4 ℓ = O 1, 30 where the constants in the error terms only depend on β. We consider the eigenvalue equation for ˜ A D n,m with a given Λ ∈ R and denote a nontrivial solution of the first 2n − 1 components by u 1 , v 1 , u 2 , v 2 , . . . , u n , v n . Then we have s ℓ v ℓ + p ℓ + X ℓ v ℓ+1 = Λu ℓ+1 , ≤ ℓ ≤ n − 1, p ℓ+1 u ℓ+1 + s ℓ + Y ℓ u ℓ+2 = Λv ℓ+1 , ≤ ℓ ≤ n − 2, where we set v = 0 and we can assume u 1 = 1 by linearity. We set r ℓ = r ℓ,Λ = u ℓ+1 v ℓ , 0 ≤ ℓ ≤ n−1 and ˆr ℓ = ˆr ℓ,Λ = v ℓ u ℓ , 1 ≤ ℓ ≤ n. These are elements of R ∪ {∞} satisfying the recursion ˆr ℓ+1 = − 1 r ℓ · s ℓ p ℓ + Λ p ℓ 1 + X ℓ p ℓ −1 , ≤ ℓ ≤ n − 1 31 r ℓ+1 = − 1 ˆr ℓ+1 · p ℓ+1 s ℓ + Λ s ℓ 1 + Y ℓ s ℓ −1 , ≤ ℓ ≤ n − 2, 32 with initial condition r = ∞. We can set Y n = 0 and define r n via 32 with ℓ = n − 1, then Λ is an eigenvalue if and only if r n = 0. 324

4.2 The hyperbolic point of view

We use the hyperbolic geometric approach of [13] to study the evolution of r and ˆr. We will view R ∪ {∞} as the boundary of the hyperbolic plane H = {ℑz 0 : z ∈ C} in the Poincaré half-plane model. We denote the group of linear fractional transformations preserving H by PSL2, R. The recursions for both r and ˆr evolve by elements of this group of the form x 7→ b − ax with a 0. The Poincaré half-plane model is equivalent to the Poincaré disk model U = {|z| 1} via the con- formal bijection Uz = iz+1 z+i which is also a bijection between the boundaries ∂ H = R ∪ {∞} and ∂ U = {|z| = 1, z ∈ C }. Thus elements of PSL2, R also act naturally on the unit circle ∂ U. By lifting these maps to R, the universal cover of ∂ U, each element T in PSL2, R becomes an R → R function. The lifted versions are uniquely determined up to shifts by 2 π and will also form a group which we denote by UPSL2, R. For any T ∈ UPSL2, R we can look at T as a function acting on ∂ H , ∂ U or R. We will denote these actions by: ∂ H → ∂ H : z 7→ z.T, ∂ U → ∂ U : z 7→ z ◦

T, ∂ R → ∂ R : z 7→ z

∗ T. For every T ∈ UPSL2, R the function x 7→ f x = x ∗ T is monotone, analytic and quasiperiodic modulo 2 π: f x + 2π = f x + 2π. It is clear from the definitions that e i x ◦ T = e i f x and 2 tanx.T = 2 tan f x. Now we will introduce a couple of simple elements of UPSL2, R. For a given α ∈ R we will denote by Q α the rotation by α in U about 0. More precisely, ϕ ∗ Q α = ϕ + α. For a 0, b ∈ R we denote by Aa, b the affine map z → az + b in H . This is an element of PSL2, R which fixes ∞ in H and −1 in ∂ U. We specify its lifted version in UPSL2, R by making it fix π, this will uniquely determines it as a R → R function. Given T ∈ UPSL2, R, x, y ∈ R we define the angular shift ash T, x, y = y ∗ T − x ∗ T − y − x which gives the change in the signed distance of x, y under

T. This only depends on v = e

i x , w = e i y and the effect of T on ∂ U, so we can also view ashT, ·, · as a function on ∂ U ×∂ U and the following identity holds: ash

T, v, w = arg

[0,2π w ◦ T v ◦ T − arg [0,2π wv. The following lemma appeared as Lemma 16 in [13], it provides a useful estimate for the angular shift. Lemma 12. Suppose that for a T ∈ UPSL2, R we have i + z.T = i with |z| ≤ 1 3 . Then ash

T, v, w = ℜ

h ¯ w − ¯v −z − i2+¯ v+ ¯ w 4 z 2 i + ǫ 3 = −ℜ [ ¯ w − ¯vz] + ǫ 2 = ǫ 1 , 33 where for d = 1, 2, 3 and an absolute constant c we have |ǫ d | ≤ c|w − v||z| d ≤ 2c|z| d . 34 If v = −1 then the previous bounds hold even in the case |z| 1 3 . 325

4.3 Regularized phase functions

Because of the scaling in 11 we will set Λ = µ n + λ 4n 1 2 . We introduce the following operators J ℓ = QπAs ℓ p ℓ , µ n s ℓ , M ℓ = A1 + X ℓ p ℓ −1 , λ4n 1 2 p ℓ A p ℓ p ℓ+1 , 0, ˆ J ℓ = QπAp ℓ s ℓ , µ n p ℓ , ˆ M ℓ = A1 + Y ℓ s ℓ −1 , λ4n 1 2 s ℓ . Then 31 and 32 can be rewritten as r ℓ+1 = r ℓ . J ℓ M ℓ ˆ J ℓ ˆ M ℓ , r = ∞. We suppressed the λ dependence in r and the operators M, ˆ M. Lifting these recursions from ∂ H to R we get the evolution of the corresponding phase angle which we denote by φ ℓ = φ ℓ,λ . φ ℓ+1 = φ ℓ∗ J ℓ M ℓ ˆ J ℓ ˆ M ℓ , φ = −π. 35 Solving the recursion from the other end, with end condition 0 we get the target phase function φ ⊙ ℓ,λ : φ ⊙ ℓ = φ ⊙ ℓ+1∗ ˆ M −1 ℓ ˆ J −1 ℓ M −1 ℓ J −1 ℓ , φ ⊙ n = 0. 36 It is clear that φ ℓ,λ and φ ⊙ ℓ,λ are independent for a fixed ℓ as functions in λ, they are monotone and analytic in λ and we can count eigenvalues using the formula 21. In our case both M ℓ and ˆ M ℓ will be small perturbations of the identity so J ℓ ˆ J ℓ will be the main part of the evolution. This is a rotation in the hyperbolic plane if it only has one fixed point in H. The fixed point equation ρ ℓ = ρ ℓ . J ℓ ˆ J ℓ can be rewritten as ρ ℓ = p ℓ s ℓ    µ n p ℓ − p ℓ µ n s ℓ − 1 ρ ℓ    = ρ ℓ µ 2 n − p 2 ℓ − µ n s ℓ ρ ℓ µ n s ℓ − s 2 ℓ . This can be solved explicitly, and one gets the following unique solution in the upper half plane if ℓ n + 12: ρ ℓ = µ 2 n − m + n 2 µ n s ℓ + i s 1 − µ 2 n − m + n 2 4 µ 2 n s 2 ℓ . 37 One also needs to use the identity p 2 ℓ − s 2 ℓ = m − n and 12. This shows that if ℓ n then J ℓ ˆ J ℓ is a rotation in the hyperbolic plane. We can move the center of rotation to 0 in U by conjugating it with an appropriate affine transformation: J ℓ ˆ J ℓ = Q−2 argρ ℓ ˆ ρ ℓ T −1 ℓ . Here T ℓ = Aℑρ ℓ −1 , −ℜρ ℓ , X Y = Y −1 XY and ˆ ρ ℓ = µ 2 n + m − n 2 µ n p ℓ + i s 1 − µ 2 n + m − n 2 4 µ 2 n p 2 ℓ . 38 326 In order to regularize the evolution of the phase function we introduce ϕ ℓ,λ := φ ℓ,λ∗ T ℓ Q ℓ−1 , ≤ ℓ n where Q ℓ = Q2 argρ ˆ ρ · · · Q2 argρ ℓ ˆ ρ ℓ and Q −1 is the identity. It is easy to check that the initial condition remains ϕ 0, λ = π. Then ϕ ℓ+1 = ϕ ℓ∗ Q −1 ℓ−1 T −1 ℓ J ℓ M ℓ ˆ J ℓ ˆ M ℓ T ℓ+1 Q ℓ = ϕ ℓ∗ Q −1 ℓ−1 T −1 ℓ Q −2 argρ ℓ T −1 ℓ M ˆ J ℓ ℓ ˆ M ℓ T ℓ T −1 ℓ T ℓ+1 Q ℓ = ϕ ℓ∗  M ˆ J ℓ ℓ T ℓ ‹ Q ℓ € ˆ M ℓ T ℓ Š Q ℓ € T −1 ℓ T ℓ+1 Š Q ℓ Note that the evolution operator is now infinitesimal: M ℓ , ˆ M ℓ and T −1 ℓ T ℓ+1 will all be asymptotically small, and the various conjugations will not change this. We can also introduce the corresponding target phase function ϕ ⊙ ℓ,λ := φ ⊙ ℓ,λ∗ T ℓ Q ℓ−1 , ≤ ℓ n . 39 The new, regularized phase functions ϕ ℓ,λ and ϕ ⊙ ℓ,λ have the same properties as φ, φ ⊙ , i.e.: they are independent for a fixed ℓ as functions in λ, they are monotone and analytic in λ and we can count eigenvalues using the formula 24. See 22 and the discussion before it. We will further simplify the evolution using the following identities: − a r + b = ‚ b 2 + 1 a r − b Œ Q arg b − i b + i , r.ˆ J ℓ T ℓ = − 1 r p ℓ s ℓ ℑρ ℓ + µ n s ℓ ℑρ ℓ − ℜρ ℓ ℑρ ℓ . From this we get ˆ J ℓ T ℓ = ˆ T ℓ Q ℓ −2 arg ˆ ρ ℓ where r.ˆ T ℓ = ‚ s ℓ ℑρ ℓ p ℓ − 2 ℜρ ℓ ℑρ ℓ µ n + µ 2 n ℑρ ℓ p ℓ s ℓ Œ r − µ n s ℓ ℑρ ℓ + ℜρ ℓ ℑρ ℓ = 1 ℑ ˆ ρ ℓ r − ℜ ˆ ρ ℓ ℑ ˆ ρ ℓ . This allows us to write  M ˆ J ℓ ℓ T ℓ ‹ Q ℓ = M ˆ T ℓ ℓ Q −2 arg ˆ ρ ℓ Q ℓ = M ˆ T ℓ ℓ ˆ Q ℓ . 40 where ˆ Q ℓ = Q ℓ Q −2 arg ˆ ρ ℓ . Thus ϕ ℓ+1 = ϕ ℓ∗ M ˆ T ℓ ℓ ˆ Q ℓ ˆ M T ℓ ℓ Q ℓ € T −1 ℓ T ℓ+1 Š Q ℓ . 327 We will introduce the following operators to break up the evolution into smaller pieces: L ℓ,λ = A1, λ4n 1 2 p ℓ , ˆ L ℓ,λ = A1, λ4n 1 2 s ℓ , S ℓ,λ = L ˆ T ℓ ℓ,λ ˆ T −1 ℓ A p ℓ p ℓ+1 1 + X ℓ p ℓ −1 , 0 ˆ T ℓ , 41 ˆ S ℓ,λ = ˆ L T ℓ ℓ,λ € T ℓ −1 A1 + Y ℓ s ℓ −1 , 0 T ℓ+1 Š . Then ϕ ℓ+1 = ϕ ℓ∗ L ˆ T ℓ ℓ ˆ Q ℓ € S ℓ,0 Š ˆ Q ℓ ˆ L T ℓ ℓ Q ℓ €ˆ S ℓ,0 Š Q ℓ = ϕ ℓ∗ € S ℓ,λ Š ˆ Q ℓ €ˆ S ℓ,λ Š Q ℓ . 42 We also introduce the relative regularized phase function and target phase function: α ℓ,λ := ϕ ℓ,λ − ϕ ℓ,0 , α ⊙ ℓ,λ := ϕ ⊙ ℓ,λ − ϕ ⊙ ℓ,0 . 43 5 SDE limit for the phase function Let F ℓ denote the σ-field generated by ϕ j, λ , j ≤ ℓ − 1. Then ϕ ℓ,λ is a Markov chain in ℓ with respect to F ℓ . Indeed, the relation 42 shows that ϕ ℓ+1,λ = h ℓ,λ ϕ ℓ+1,λ , X ℓ , Y ℓ where h ℓ,λ is a deterministic function depending on ℓ and λ. Since X ℓ , Y ℓ are independent of F ℓ it follows that E ” ϕ ℓ+1,λ |F ℓ — = E ” ϕ ℓ+1,λ |ϕ ℓ,λ — . We will show that this Markov chain converges to a diffusion limit after proper normalization. In order to do this we will estimate E ” ϕ ℓ+1,λ − ϕ ℓ,λ |F ℓ — and E ” ϕ ℓ+1,λ − ϕ ℓ,λ ϕ ℓ+1,λ ′ − ϕ ℓ,λ ′ |F ℓ — using the angular shift lemma, Lemma 12. To simplify the computations we introduce ‘intermediate’ values for the process ϕ ℓ,λ by breaking the evolution operator in 42 into two parts: ϕ ℓ+ 1 2 , λ = ϕ ℓ∗ € S ℓ,λ Š ˆ Q ℓ , F ℓ+ 1 2 = σF ℓ ∪ {ϕ ℓ+ 1 2 , λ }. Note that ϕ ℓ,λ is still a Markov chain if we consider it as a process on the half integers. Remark 13. We would like to note that the ‘half-step’ evolution rules ϕ ℓ,λ → ϕ ℓ+ 1 2 , λ , ϕ ℓ+ 1 2 , λ → ϕ ℓ+1,λ are very similar to the one-step evolution of the phase function ϕ in [13]. Indeed, in [13], the evolution of ϕ is of the type ϕ ℓ+1 = ϕ ℓ∗ €˜ S ℓ,λ Š ˜ Q ℓ where ˜ S is an affine transformation and ˜ Q is a rotation similar to our S, ˆ S and Q, ˆ Q. In our case the evolution of ϕ ℓ+1,λ is the composition of two transformations with similar structure. The main difficulties in our computations are caused by the fact that Q and ˆ Q are rather different which makes the oscillating terms more complicated.

5.1 Single step estimates

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52