Bulk limit of the singular values

Because of the previous lemma it is enough to study the eigenvalues of the 2n × 2n tridiagonal matrix ˜ A n,m = 1 p β            ˜ χ βm−1 ˜ χ βm−1 χ βn−1 χ βn−1 ˜ χ βm−2 ... ... ... ˜ χ βm−n+1 χ β χ β ˜ χ βm−n ˜ χ βm−n            6 The main advantage of this representation, as opposed to studying the tridiagonal matrix A n,m A T n,m , is that here the entries are independent modulo symmetry. Remark 8. Assume that [u 1 , v 1 , u 2 , v 2 , . . . , u n , v n ] T is an eigenvector for ˜ A n,m with eigenvalue λ. Then [u 1 , u 2 , . . . , u n ] T is and eigenvector for A T n,m A n,m with eigenvalue λ 2 and [v 1 , v 2 , . . . , v n ] T is an eigenvector for A n,m A T n,m with eigenvalue λ 2 .

2.2 Bulk limit of the singular values

We can compute the asymptotic spectral density of ˜ A n,m from the Marchenko-Pastur distribution. If m n → γ ∈ [1, ∞ then the asymptotic density when scaled with p n is σ γ x = 2|x| ˜ σ γ x 2 = p x 2 − a 2 b 2 − x 2 π|x| 1 [a,b] |x| = p x − ax + ab − xb + x π|x| 1 [a,b] |x|. 7 This means that the spectrum of ˜ A n,m in R + is asymptotically concentrated on the interval [ p m − p n, p m + p n]. We will scale around µ n ∈ p m − p n, p m + p n where µ n is chosen in a way that it is not too close to the edges. Near µ n the asymptotic eigenvalue density should be close to σ m n µ n p n which explains the choice of the scaling parameters in the following theorem. Theorem 9. Fix β 0 and suppose that m = mn n. Let Λ n denote the set of eigenvalues of ˜ A n,m and set n = π 2 4 n σ m n € µ n n −12 Š 2 − 1 2 , n 1 = n − π 2 4 n σ m n € µ n n −12 Š 2 . 8 Assume that as n → ∞ we have n 1 3 1 n −1 → 0 9 and lim inf n →∞ m n 1 or lim n →∞ m n = 1 and lim inf n →∞ µ n p n 0. 10 Then 4 p n Λ n − µ n ⇒ Sine β . 11 318 The extra 12 in the definition of n is introduced to make some of the forthcoming formulas nicer. We also note that the following identities hold: n + 1 2 = 2m + n µ 2 n − m − n 2 − µ 4 n 4 µ 2 n , n 1 = € m − n − µ 2 n Š 2 4 µ 2 n . 12 Note that we did not assume that m n converges to a constant or that µ n = p c p n . By the discus- sions at the beginning of this section Λ n ∩ R + 2 is distributed according to the Laguerre ensemble. If we assume that m n → γ and µ n = p c p n with c ∈ aγ 2 , b γ 2 then both 9 and 10 are satisfied. Since in this case n n −1 → ˜ σ γ c the result of Theorem 9 implies Theorem 2. Remark 10. We want prove that the weak limit of 4pn Λ n − µ n is Sine β , thus it is sufficient to prove that for any subsequence of n there is a further subsequence so that the limit in distribution holds. Because of this by taking an appropriate subsequence we may assume that m n → γ ∈ [1, ∞], and if m n → 1 then µ n p n → c ∈ 0, 2]. 13 These assumptions imply that for m 1 = m − n + n 1 we have lim inf n →∞ m 1 n 0. 14 One only needs to check this in the m n → 1 case, when from 13 and the definition of n 1 we get n 1 n → c 0. Remark 11. The conditions of Theorem 9 are optimal if lim inf m n 1 and the theorem provides a complete description of the possible point process scaling limits of Λ L n . To see this first note that using Λ L n = Λ n ∩ R + 2 we can translate the edge scaling limit of Theorem 3 to get 2mn 1 6 p m ± p n 1 3 Λ n − p m ± p n ⇒ ± Airy β . 15 If lim inf m n 1 then by the previous remark we may assume lim mn = γ ∈ 1, ∞]. Then the previous statement can be transformed into n 1 6 Λ n − p m ± p n d =⇒ Ξ where Ξ is a a linear transformation of Airy β . From this it is easy to check that if n 1 3 1 n −1 → c ∈ 0, ∞] then we need to scale Λ n − µ n with n 1 6 to get a meaningful limit and the limit is a linear transformation of Airy β and if n 1 3 1 n −1 → 0 then we get the bulk case. If m n → 1 then the condition 10 is suboptimal, this is partly due to the fact that the lower soft edge limit in this case is not available. Assuming lim inf m − n 0 the statement should be true with the following condition instead of 10: µ n p nm − n −13 − 1 2 m − n 2 3 → ∞. 16 It is easy to check that this condition is necessary for the bulk scaling limit. By choosing an appro- priate subsequence we may assume that m − n → a 0 or m − n → ∞. Then if 16 does not hold then we can use Theorem 5 if m − n → a 0 or 15 if m− n → ∞ to show that an appropriately scaled version of Λ n − µ n converges to a shifted copy of the hard edge or soft edge limiting point process and thus it cannot converge to Sine β . 319

2.3 The Sine

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52