Identifikasi Model Metode Korelasi Silang

merupakan variansi silang peubah y 3.3.3 Metode Box- Jenkins Gambar 6 Skema pendekatan Box- Jenkins Makridakis, 19 88

1. Identifikasi Model

Sebelum melakukan pendeferensialan terlebih dahulu dilakukan identifikasi kestasioneran data yang digunakan. Apabila data yang digunakan tidak stasioner maka dilakukan pendeferensialan sehingga didapatkan time series yang stasioner. Time series yang nonstasioner dapat diubah menjadi stasioner dengan cara mentransformasikan nilai-nilai time series tersebut. Jika time series tidak memiliki variasi musiman, maka transformasi ke bentuk yang stasioner seringkali digunakan transformasi beda pertama terhadap nilai-nilai time series asal. Jika pembedaan pertama belum menghasilkan time series yang stasioner, maka diperlukan pembedaan yang lebih komplek lagi. Dalam identifikasi model, hal pertama yang harus dilakukan adalah: a. Membuat plot data time plot yang bermanfaat untuk melihat secara kasat mata apakah data stasioner atau tidak. b. Memeriksa plot dari fungsi autokorelasi ACF dan fungsi autokorelasi parsial PACF untuk melihat model dari data. Apabila ACF signifikan pada lag lead time q dan PACF menurun secara eksponensial, maka data dapat dimodelkan dengan model moving average derajat q MA q dan jika ACF turun secara eksponensial dan PACF signifikan pada lag p, maka data dapat dimodelkan dengan model autoregresif derajat p AR p. Apabila kedua hal tersebut tidak diperoleh, ada kemungkinan model merupakan proses gabungan AR dan MA atau ARMA p,q. Jadi untuk menentukan orde dari proses AR adalah dengan melihat PACF. Lain halnya dengan model MA untuk menentukan orde dari model ini digunakan ACF. Namun baik ACF maupun PACF dari masing-masing model harus tetap diperhatikan karena bisa saja model yang diperoleh adalah model ARMA. Oleh karena itu untuk mengidentifikasi model deret waktu lebih baik digunakan kedua-duanya yaitu ACF dan PACF. Berikut ini adalah perilaku ACF dan PACF untuk model AR p, MA q, dan ARMA p,q: Tabel 1 Identifikasi model deret waktu ARp, MAq, dan ARMA p,q AR p MA q ARMA p,q ACF Ekspo- nensial menurun Cut – off pada lag ke- q Eksponen- sial menurun mulai lag ke - p PACF Cut – off pada lag ke - p Ekspo- nensial menu- run Eksponen- sial menurun mulai lag ke - q

2. Pendugaan Parameter Model

Dokumen yang terkait

Pengaruh Indian Ocean Dipole (IOD) terhadap propagasi Madden Julian Oscillation (MJO)

3 27 31

Pengembangan Model Prediksi Madden-Julian Oscillation (MJO) Berbasis Hasil Analisis Data Wind Profiler Radar (WPR)

2 19 98

The Influence of the Madden-Julian Oscillation on Diurnal Cycle of Rainfall over Sumatera

0 7 54

Respon Suhu Permukaan Laut (SPL) dan Klorofil-a terhadap Madden-Julian Oscillation (MJO) di Laut Indonesia

2 12 35

PENGEMBANGAN MODEL PREDIKSI MADDEN-JULIAN OSCILLATION (MJO) BERBASIS HASILANALISIS DATA WIND PROFILER RADAR (WPR)

0 4 11

IDENTIFIKASI MADDEN JULIAN OSCILLATION (MJO) UNTUK PREDIKSI PELUANG BANJIR TAHUNAN DI SUB DAS SOLO HULU Identifikasi Madden Julian Oscillation (MJO) Untuk Prediksi Peluang Banjir Tahunan Di Sub Das Solo Hulu Bagian Tengah (2007 – 2012).

0 1 15

PENDAHULUAN Identifikasi Madden Julian Oscillation (MJO) Untuk Prediksi Peluang Banjir Tahunan Di Sub Das Solo Hulu Bagian Tengah (2007 – 2012).

0 2 19

DAFTAR PUSTAKA Identifikasi Madden Julian Oscillation (MJO) Untuk Prediksi Peluang Banjir Tahunan Di Sub Das Solo Hulu Bagian Tengah (2007 – 2012).

0 2 4

IDENTIFIKASI MADDEN JULIAN OSCILLATION (MJO) UNTUK PREDIKSI PELUANG BANJIR TAHUNAN DI SUB DAS SOLO HULU Identifikasi Madden Julian Oscillation (MJO) Untuk Prediksi Peluang Banjir Tahunan Di Sub Das Solo Hulu Bagian Tengah (2007 – 2012).

0 1 13

Karakteristik Madden-Julian Oscillation (MJO) Ketika El-Nino Southern Oscillation (ENSO) | Muhammad | Wahana Fisika 9376 19201 1 PB

1 2 24