Parametrization Total variation merging

6.1 Parametrization

Let V = {0, 1} be the two-point space. Let 0 ≤ p ≤ 1, and set M p x, y = ¨ p if y = 0 1 − p if y = 1. 1 Obviously, this chain has stationary measure ν p z = ¨ p if x = 0 1 − p if x = 1. In fact, for any probability measure µ, µM p = ν p . Let I denote the 2× 2 identity matrix and consider the family of kernels M p = K[ α, p] : K[α, p] = 1 1 + α € αI + M p Š : α ∈ − min{p, 1 − p}, ∞ . By convention we have that I = K[∞, p] for all 0 ≤ p ≤ 1. Any kernel in M p has invariant measure ν p and M p is exactly the set of all Markov kernels on V with invariant measure ν p . Indeed, if q 1 , q 2 ∈ [0, 1] and K = ‚ q 1 1 − q 1 q 2 1 − q 2 Œ then solving the equation 1 + αK = αI + M p yields α = q 1 − q 2 1 + q 2 − q 1 and p = q 2 1 + q 2 − q 1 . Note that K[ α, p] has no holding in at least one point in V when α = − min{p, 1 − p}. Also, the only non irreducible kernels are I and those with min{p, 1 − p} = 0 whereas the only irreducible periodic kernel is K[−1 2, 12]. For later purpose, we note that the nontrivial eigenvalue β 1 K[α, p] of K[ α, p] is given by β 1 K[α, p] = α 1 + α . 2

6.2 Total variation merging

Let K i ∞ 1 with K i = K[α i , p i ], p i ∈ [0, 1], α i ∈ [− min{p i , 1 − p i }, ∞ ⊂ [−12, ∞. The following statement identifies K 0,n using the α, p-parametrization. Lemma 6.1. K 0,n = ‚ 1 1 + α 0,n Œ α 0,n I + M p 0,n = K[α 0,n , p 0,n ] where α 0,n = Q n i=1 α i Q n i=1 1 + α i − Q n i=1 α i 3 and p 0,n = P n i=1 Q i−1 j=1 1 + α j Q n j=i+1 α j p i Q n i=1 1 + α i − Q n i=1 α i . 4 1485 Proof. This can be shown by induction. Note that K 0,2 = K 1 K 2 is equal to 1 1 + α 0,2 α 0,2 I + M p 0,2 with α 0,2 = α 1 α 2 1 + α 1 + α 2 , p 0,2 = α 2 p 1 + 1 + α 1 p 2 1 + α 1 + α 2 . Using the two step formula above for K 0,n+1 = K 0,n K n+1 , we have α 0,n+1 = α 0,n α n+1 1 + α 0,n + α n+1 and p 0,n+1 = α n+1 p 0,n + 1 + α 0,n p n+1 1 + α 0,n + α n+1 . 5 To see that α 0,n+1 and p 0,n+1 can be written in the forms of 3 and 4, we use the induction hypothesis along with the equality 1 + α 0,n + α n+1 = Q n+1 i=1 1 + α i − Q n+1 i=1 α i Q n i=1 1 + α i − Q n i=1 α i . To study the merging properties of K i ∞ 1 , observe that, for any two initial probability measures µ and ν on V , we have µ n − ν n = µ K 0,n − ν K 0,n = ‚ 1 1 + α 0,n Œ α 0,n µ − ν I + µ − ν M p 0,n = ‚ α 0,n 1 + α 0,n Œ µ − ν = n Y i=1 α i 1 + α i µ − ν . 6 This, together with elementary considerations, yields the following proposition. Proposition 6.2. The sequence K i ∞ 1 is not merging in total variation if and only if the following three conditions hold: 1. For all i, α i 6= 0; 2. P i: α i 1 + 2α i ∞; 3. P i: α i 1 + α i −1 ∞. Remark 6.3. The meaning of this proposition is that, in order to avoid merging we must prevent α i = 0 i.e., K i = M p i for some i and have K i approaching either I no moves or K[−1 2, 12] periodic chain at fast enough rates. For instance, for i = 1, 2, . . . , take K 2i+1 = ‚ 1 − i −2 i −2 2i −2 1 − 2i −2 Œ , K 2i = ‚ i −2 1 − i −2 1 − 3i −2 3i −2 Œ . Then α 2i+1 = 45i 2 − 1 → ∞ and α 2i = −1 − 10i −2 92 − 10i −2 9 → −12 and there is no merging. 1486 Proposition 6.4. Let Q = {K[ α 1 , p 1 ], . . . , K[α m , p m ]} be a finite family of irreducible Markov kernels on V = {0, 1}. This family is merging in total variation if and only if K[−1 2, 12] 6∈ Q, that is α i , p i 6= −12, 12, i = 1, . . . , m. Proof. Recall that, by definition, Q is merging if any sequence made of kernels from Q is merging. If K[−1 2, 12] 6∈ Q then for any infinite sequence from Q either condition 2 or condition 3 of Proposition 6.2 is violated and we have merging. Remark 6.5. The family Q considered in Proposition 6.4 may not be merging in relative-sup distance even when K[−1 2, 12] 6∈ Q. Indeed, Remark 6.9 gives an example of kernels K[ α i , p i ], K[α j , p j ] 6= K[−12, 12] such that the product K[α i , p i ]K[α j , p j ] has an absorbing state at 0 and 1 is not absorbing. For any measure µ 0, the sequence K n ∞ 1 , with K n = K[α i , p i ] if n is odd and K n = K[α j , p j ] otherwise, satisfies lim n→∞ µ 2n 1 = 0. Remark 6.6. Consider a sequence K i ∞ 1 of Markov kernels on the two-point space such that 1 is satisfied. Write K i = K[α i , p i ]. Because the kernels are reversible, 1 and formula 2 yield |α i |1 + α i ≤ β 1. This implies that the α i ’s stay uniformly away from −1 2 and +∞. By Proposition 6.2 and 6 we get kK 0,n 0, · − K 0,n 1, ·k TV ≤ β n .

6.3 Stability

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52