Stability getdoc5406. 389KB Jun 04 2011 12:04:23 AM

Proposition 6.4. Let Q = {K[ α 1 , p 1 ], . . . , K[α m , p m ]} be a finite family of irreducible Markov kernels on V = {0, 1}. This family is merging in total variation if and only if K[−1 2, 12] 6∈ Q, that is α i , p i 6= −12, 12, i = 1, . . . , m. Proof. Recall that, by definition, Q is merging if any sequence made of kernels from Q is merging. If K[−1 2, 12] 6∈ Q then for any infinite sequence from Q either condition 2 or condition 3 of Proposition 6.2 is violated and we have merging. Remark 6.5. The family Q considered in Proposition 6.4 may not be merging in relative-sup distance even when K[−1 2, 12] 6∈ Q. Indeed, Remark 6.9 gives an example of kernels K[ α i , p i ], K[α j , p j ] 6= K[−12, 12] such that the product K[α i , p i ]K[α j , p j ] has an absorbing state at 0 and 1 is not absorbing. For any measure µ 0, the sequence K n ∞ 1 , with K n = K[α i , p i ] if n is odd and K n = K[α j , p j ] otherwise, satisfies lim n→∞ µ 2n 1 = 0. Remark 6.6. Consider a sequence K i ∞ 1 of Markov kernels on the two-point space such that 1 is satisfied. Write K i = K[α i , p i ]. Because the kernels are reversible, 1 and formula 2 yield |α i |1 + α i ≤ β 1. This implies that the α i ’s stay uniformly away from −1 2 and +∞. By Proposition 6.2 and 6 we get kK 0,n 0, · − K 0,n 1, ·k TV ≤ β n .

6.3 Stability

The study of stability on the 2-point space turns out to be quite interesting. We prove the following result which readily follows from the more precise statement in Proposition 6.10 below. Theorem 6.7. Fix 0 ε ≤ η ≤ 12. Let Qε, η be the set of all Markov kernels K[α, p] on {0, 1} with p ∈ [ η, 1 − η] and α ∈ [− minp, 1 − p + ε, ∞. Then Q ε, η is ε 2 η −1 -stable with respect to any measure µ with µ 0 ∈ [η, 1 − η]. The special case in the following proposition is easy but important for the treatment of the general case in Theorem 6.7. Proposition 6.8. Fix η ∈ 0, 12 and let Q+, η = {K[α, p] : α ≥ 0, p ∈ [η, 1 − η]}. Then Q+, η is η −1 -stable with respect to any measure µ with µ 0 ∈ [η, 1 − η]. Proof. The crucial point is that when all α i are non-negative then p 0,n is a convex combination of the p i , 1 ≤ i ≤ n. Hence p 0,n ∈ [η, 1 − η] and µ n 0 ∈ [η, 1 − η]. This gives the stated result. 1487 When the α i are not all positive it is still possible to show c-stability but the proof is bit subtle. This illustrates in this simple case the intrinsic difficulties related to the notion of stability. Remark 6.9. Consider the product K[ α 1 , p 1 ]K[α 2 , p 2 ] = K[α 0,2 , p 0,2 ] when p 1 6= p 2 , minp 1 , 1 − p 1 = 1 − p 1 , minp 2 , 1 − p 2 = p 2 , α 1 = −1 − p 1 and α 2 = −p 2 . Then p 0,2 = α 2 p 1 + 1 + α 1 p 2 1 + α 1 + α 2 = −p 2 p 1 + p 1 p 2 p 2 − p 1 = 0. Proposition 6.10. Let K i = K[α i , p i ], i = 1, 2, . . . , be a sequence of Markov kernels on {0, 1} with K i ∈ Qε, η. Then p 0,n ∈ [ε 2 η, 1 − ε 2 η] for all n ≥ 1. In order to prove this proposition, we need the following technical lemma. Lemma 6.11. Fix 0 ≤ ε ≤ η ≤ 12. Let K 1 = K[α 1 , p 1 ] and K 2 = K[α 2 , p 2 ] be two Markov kernels on {0, 1}. Assume that p i ∈ [η, 1 − η], i = 1, 2. 1 If α 1 ≥ 0 and α 2 ≥ 0 then p 0,2 ∈ [η, 1 − η]. 2 If α 1 ∈ [− minp 1 , 1 − p 1 + ε, 0] and α 2 ≥ 0 then α 0,2 ∈ [− minp 0,2 , 1 − p 0,2 + ε, 0] and p 0,2 ∈ [η, 1 − η]. 3 If α 1 ∈ [− minp 1 , 1 − p 1 + ε, ∞ and α 2 ∈ [− minp 2 , 1 − p 2 + ε, 0] then p 0,2 ∈ [εη, 1 − εη]. Proof. 1 The fact that p 0,2 ∈ [η, 1 − η] follows since p 0,2 is a convex combination of p 1 and p 2 and α 0,2 ≥ 0 follows by Lemma 6.1. 2 Since 1 + α 1 ≥ 0 then p 0,2 is a convex combination of p 1 and p 2 so we get p 0,2 ∈ [η, 1 − η]. To see that α 0,2 ∈ [0, − minp 0,2 , 1 − p 0,2 + ε], Lemma 6.1 implies that we just need to check the following two inequalities: a | α 1 α 2 | ≤ p 1 α 2 + 1 + α 1 p 2 − ε1 + α 1 + α 2 . This inequality follows from p 1 α 2 + 1 + α 1 p 2 − ε1 + α 1 + α 2 + α 1 α 2 = α 2 p 1 + α 1 + 1 + α 1 p 2 − ε1 + α 1 + α 2 ≥ εα 2 + 1 + α 1 p 2 − ε1 + α 1 + α 2 = 1 + α 1 p 2 − ε ≥ 1 + α 1 η − ε ≥ 0. b | α 1 α 2 | ≤ q 1 α 2 + 1 + α 1 q 2 − ε1 + α 1 + α 2 where q i = 1 − p i . This inequality follows from the same calculations as in part a and the facts that q i ∈ [η, 1 − η] and α i ≥ −q i + ε. 3 Write p 0,2 = α 2 p 1 + 1 + α 1 p 2 1 + α 1 + α 2 = p 2 − |α 2 | p 1 − p 2 1 + α 1 + α 2 7 and observe that p 1 − p 2 1 + α 1 + α 2 = |p 1 − p 2 | 1 + α 1 + α 2 ≤ |p 1 − p 2 | |p 1 − p 2 | + 2ε 1488 The last inequality follows from 1 + α 1 + α 2 ≥ p 1 − p 2 + 2ε and 1 + α 1 + α 2 ≥ p 2 − p 1 + 2ε. Note that x x + 2ε is an increasing function for x ≥ 0, since |p 1 − p 2 | ≤ 1 we get that p 1 − p 2 1 + α 1 + α 2 ≤ 1 1 + 2 ε ≤ 1 − ε. If p 1 ≤ p 2 then 7 implies p 0,2 ≥ p 2 ≥ η ≥ εη. With q 2 = 1 − p 2 , we get p 0,2 ≤ 1 − q 2 + q 2 p 2 − p 1 1 + α 1 + α 2 ≤ 1 − q 2 + q 2 1 − ε ≤ 1 − εq 2 ≤ 1 − εη. If p 2 ≤ p 1 then 7 implies p 0,2 ≤ p 2 ≤ 1 − η ≤ 1 − εη. For the lower bound we note that p 0,2 ≥ p 2 − p 2 p 1 − p 2 1 + α 1 + α 2 ≥ p 2 − p 2 1 − ε ≥ εp 2 ≥ εη. Proof of Proposition 6.10. To introduce convenient notation, if K[ α, p] ∈ M p we say that α = αK and p = pK. Let K i ∞ 1 be the sequence of kernels considered in Proposition 6.10. Fix n ≥ 1, and let {i j } m j=1 be the set of numbers 1 ≤ i j ≤ n such that αK i j 0. Set i = 0 and consider the kernels Q j = K i j ,i j+1 −1 for 0 ≤ j ≤ m Note that for any j ∈ [1, m] and l ∈ [i j , i j+1 − 1] we have that αK l ≥ 0 and pK l ∈ [η, 1 − η]. Note that either Q j = I or by Lemma 6.11 we have that αQ j ≥ 0 and pQ j ∈ [η, 1 − η]. Now we write, K 0,n = Q K i 1 Q 1 . . . K i j Q j . . . K i m Q m . For any j ∈ [1, m], consider the kernel M j = K i j Q j . Since αK j ∈ [− minp i , 1 − p i + ε, 0] and αQ j ≥ 0 or Q j = I, it follows by Lemma 6.11 that αM j ∈ [− minpM j , 1 − pM j + ε, 0] and pM j ∈ [η, 1 − η]. 8 So now we write K 0,n = Q M 1 M 2 . . . M m . Consider the kernels e M i = M 2i−1 M 2i . It follows by Lemma 6.11 and 8 that α e M i ≥ 0 and p e M j ∈ [εη, 1 − εη]. Let B = Q Ý M 1 . Since Q = I or αQ ≥ 0 and pQ ∈ [η, 1 − η] by Lemma 6.11 we have that αB ≥ 0 and pB ∈ [εη, 1 − εη]. If m = 2k then we write K 0,n = B e M 2 . . . e M k . For any K ∈ {B, e M 2 , . . . , e M k } we have that αK ≥ 0 and pK ∈ [εη, 1 − εη], so by Lemma 6.11 we get αK 0,n ≥ 0 and pK 0,n ∈ [εη, 1 − εη]. If m = 2k + 1 the we write K 0,n = B e M 2 . . . e M k M m = M ′ M m where M ′ = B e M 2 . . . e M k . By the same arguments as above we have αM ′ ≥ 0 and pM ′ ∈ [εη, 1 − εη]. Lemma 6.11 and 8 we get that pK 0,n ∈ [ε 2 η, 1 − ε 2 η] as desired. 1489

6.4 Stability and relative-sup merging

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52