Singular values and c-stability

Proposition 4.9. Assume that there is a constant a ≥ 1 such that for any two finite sequences Q 1 , . . . , Q i and Q ′ 1 , . . . , Q ′ j of kernels from Q the stationary measures π, π ′ of the products Q 1 · · · Q i , Q ′ 1 · · · Q ′ j satisfy a −1 π ≤ π ′ ≤ aπ. Then Q is a 2 -stable with respect to the invariant measure π K of any kernel K ∈ Q. Proof. Let K i ∞ 1 be a sequence of kernels from Q. By hypothesis, for any fixed n, if π ′ n denotes the invariant measure of K 0,n = K 1 · · · K n , we have a −1 π K ≤ π ′ n ≤ aπ K . Hence, a −1 π ′ n ≤ π K K 0,n ≤ aπ ′ n . This implies a −2 π K ≤ π K K 0,n ≤ a 2 π K as desired.

4.1 Singular values and c-stability

Suppose Q has invariant measure π and second largest singular value σ 1 . Then d 2 Q n x, ·, π ≤ πx −12 σ n 1 . See, e.g., [12] or [23, Theorem 3.3]. The following two statements can be viewed as a generalization of this inequality and illustrates the use of c-stability. The first one uses c-stability of the sequence K i ∞ 1 whereas the second assumes the c-stability of a set of kernels. In both results, the crucial point is that the unknown singular values σK i , µ i−1 are replaced by expressions that depend on singular values that can, in many cases, be estimated. Theorem 4.7 is a simple corollary of the following theorem. Theorem 4.10. Fix c ∈ 1, ∞. Let K i ∞ 1 be a sequence of irreducible Markov kernels on a finite set V . Assume that K i ∞ 1 is c-stable with respect to a positive probability measure µ . For each i, set µ i = µ K i and let σ 1 K i , µ be the second largest singular value of K i as an operator from ℓ 2 µ i to ℓ 2 µ . Then d 2 K 0,n x, ·, µ n ≤ µ x −12 n Y 1 1 − c −2 1 − σ 1 K i , µ 2 1 2 . In addition, K 0,n x, y µ n y − 1 ≤ c 1 2 µ xµ y −12 n Y 1 1 − c −2 1 − σ 1 K i , µ 2 1 2 . Proof. First note that since µ i−1 µ ∈ [1c, c], we have µ i µ i ∈ [1c, c]. Consider the operator P i of Remark 3.3 and its kernel P i x, y = 1 µ i x X z µ i−1 zK i z, xK i z, y. By assumption µ i xP i x, y ≥ c −1 µ i x   1 µ i x X z µ zK i z, xK i z, y   where the term in brackets on the right-hand side is the kernel of K ∗ i K i where K i : ℓ 2 µ i → ℓ 2 µ . This kernel has second largest eigenvalue σK i , µ 2 . A simple eigenvalue comparison argument yields 1 − σ 1 K i , µ i−1 2 ≥ 1 c 2 1 − σ 1 K i , µ 2 . Together with Theorem 3.2, this gives the stated result. The last inequality in the theorem is simply obtained by replacing µ n by µ using c-stability. 1474 Theorem 4.11. Fix c ∈ 1, ∞. Let Q be a family of irreducible aperiodic Markov kernels on a finite set V . Assume that Q is c-stable with respect to some positive probability measure µ . Let K i ∞ 1 be a sequence of Markov kernels with K i ∈ Q for all i. Let π i be the invariant measure of K i . Let σ 1 K i be the second largest singular value of K i as an operator on ℓ 2 π i . Then, we have d 2 K 0,n x, ·, µ n ≤ µ x −12 n Y 1 1 − c −4 1 − σ 1 K i 2 1 2 . In addition, K 0,n x, y µ n y − 1 ≤ c 1 2 µ xµ y −12 n Y 1 1 − c −4 1 − σ 1 K i 2 1 2 . Proof. Recall that the hypothesis that Q is c-stable implies π i µ i ∈ [1c 2 , c 2 ]. Consider again the operator P i of Remark 3.3 and its kernel P i x, y = 1 µ i x X z µ i−1 zK i z, xK i z, y. By assumption µ i xP i x, y ≥ c −2 π i x   1 π i x X z π i zK i z, xK i z, y   where the term in brackets on the right-hand side is the kernel of K ∗ i K i where K i : ℓ 2 π i → ℓ 2 π i . As µ i x ≤ c 2 π i x, a simple eigenvalue comparison argument yields 1 − σ 1 K i , µ i−1 2 ≥ 1 c 4 1 − σ 1 K i 2 . Together with Theorem 3.2, this gives the desired result. The following result is an immediate corollary of Theorem 4.11. It gives a partial answer to Problem 1.1 stated in the introduction based on the notion of c-stability. Corollary 4.12. Fix c ∈ 1, ∞ and λ ∈ 0, 1. Let Q be a family of irreducible aperiodic Markov kernels on a finite set V . Assume that Q is c-stable with respect to some positive probability measure µ and set µ ∗ = min x {µ x}. For any K in Q, let π K be its invariant measure and σ 1 K be the singular value of K on ℓ 2 π K . Assume that, ∀ K ∈ Q, σ 1 K ≤ 1 − λ. Then, for any ε 0, the relative-sup ε-merging time of Q is bounded above by 2c 4 λ2 − λ log ‚ c 1 2 εµ ∗ Œ . Remark 4.13. The kernels in Remark 2.5 are two reversible irreducible aperiodic kernels K 1 , K 2 on the 2-point space so that the sequence obtained by alternating K 1 , K 2 is not merging in relative-sup distance. While these two kernels satisfy max{ σ 1 K 1 , σ 2 K 2 } 1, Q = {K 1 , K 2 } fails to be c-stable for any c 0. The family of kernels Q = ¨ M p = ‚ p 1 − p p 1 − p Œ , p ∈ 0, 1 « 1475 has relative-sup merging time bounded by 1 but is not c-stable for any c ≥ 1. To see that c-stability fails for Q, note that we may choose a sequence K n ∞ 1 such that K n = M p n where p n → 0. This shows that the c-stability hypothesis is not a necessary hypothesis for the conclusion to hold for certain Q. The following proposition describes a relation of merging in total variation to merging in the relative- max distance under c-stability. Note that we already noticed that without the hypothesis of c-stability the properties listed below are not equivalent. Proposition 4.14. Let V be a state space equipped with a finite family Q of irreducible Markov kernels. Assume that Q is c-stable and that either of the following conditions hold for each given K ∈ Q: i K is reversible with respect to some positive probability measure π 0. ii There exists ε 0 such that K satisfies Kx, x ε for all x. Then the following properties are equivalent: 1. Each K ∈ Q is irreducible aperiodic this is automatic under ii. 2. Q is merging in total variation. 3. Q is merging in relative-sup. Proof. Clearly the third listed property implies the second which implies the first. We simply need to show that the first property implies the third. Let K n ∞ 1 be a sequence with K n ∈ Q for all n ≥ 1. Let π n be the invariant measure for K n and σ 1 K n be its second largest singular value as an operator on ℓ 2 π n . Either of the conditions i-ii above implies that σ 1 K n 1. Indeed, if i holds, K n = K ∗ n and σ 1 K n = max{β 1 K n , −β |V |−1 K n } where β 1 K n and β |V |−1 K n are the second largest and small- est eigenvalues of K n respectively. It is well-known, for a reversible kernel K n , the fact that K n is irreducible aperiodic is equivalent to max{ β 1 K n , −β |V |−1 K n } 1. If ii holds, Lemma 2.5 of [8] tells us that σ 1 K n ≤ 1 − ε1 − β 1 ˜ K n where ˜ K n = 12K n + K ∗ n . If K n is irreducible aperiodic, so is ˜ K n and it follows that β 1 ˜ K n 1. Hence σ 1 K n 1. Since Q is a finite family, the σ 1 K n can be bounded uniformly away from 1. Theorem 4.11 now yields that Q is merging in relative-sup.

4.2 End-point perturbations for random walk on a stick

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52