Analisis Regresi Linier Sederhana Analisis Regresi Linier Berganda

2.2.1 Analisis Regresi Linier Sederhana

Regresi linier sederhana digunakan untuk memperkirakan hubungan antara dua variabel dimana hanya terdapat satu variabelpeubah bebas X dan satu peubah tak bebas Y. Dalam bentuk persamaan, model regresi sederhana adalah : Y = a + bX 2.1 Dengan: Y adalah variabel dependen tak bebas X adalah variabel Independen bebas a adalah penduga bagi intercept α b adalah penduga bagi koefisien regresi β Penggunaan regresi linier sederhana didasarkan pada asumsi diantaranya sebagai berikut: 1. Model regresi harus linier dalam parameter. 2. Variabel bebas tidak berkorelasi dengan disturba nce term error. 3. Nilai disturbace term sebesar 0 atau dengan symbol sebagai berikut: E UX = 0. 4. Varian untuk masing-masing error term kesalahan konstan. 5. Tidak terjadi auto korelasi. 6. Model regresi dispesifikasi secara benar. Tidak terdapat bias spesifikasi Dalam model yang digunakan dalam analisis empiris. 7. Jika variabel bebas lebih dari satu, maka antara variabel bebas explanatory tidak ada hubungan linier yang nyata. Universitas Sumatera Utara

2.2.2 Analisis Regresi Linier Berganda

Untuk memperkirakan nilai variabel tak bebas Y, akan lebih baik apabila ikut memperhitungkan variabel-variabel bebas lain yang ikut mempengaruhi nilai Y. dengan demikian dimiliki hubungan antara satu variabel tidak bebas Y dengan beberapa variabel lain yang bebas X 1 , X 2 , dan X 3 , … , X k . Untuk itulah digunakan regresi linear berganda. Dalam pembahasan mengenai regresi sederhana, simbol yang digunakan untuk variabel bebasnya adalah X. dalam regresi berganda, persamaan regresinya memiliki lebih dari satu variabel bebas maka perlu menambah tanda bilangan pada setiap variabel tersebut, dalam hal ini X 1 , X 2 , … , X k . Secara umum persamaan regresi berganda dapat ditulis sebagai berikut: � = � + � � + � � + … + � � � + � � 2.2 Dengan : = Variabel tidak bebas = Variabel bebas 0 1 , … , = koefisien regresi Dalam penelitian ini, digunakan tiga variabel yang terdiri dari satu variabel bebas Y dan tiga variabel X yaitu X 1 , X 2 , dan X 3 . Maka persamaan regresi bergandanya adalah: = � + � � + � � + � � 2.3 Universitas Sumatera Utara Persamaan 2.3 diatas dapat diselesaikan dengan empat bentuk yaitu: ∑ � = � � + � ∑ � + � ∑ � + � ∑ � 2.4 ∑ � � = � ∑ � + � ∑ � + � ∑ � � + � ∑ � � 2.5 ∑ � � = � ∑ � + � ∑ � � + � ∑ � + � ∑ � � 2.6 ∑ � � = � ∑ � + � ∑ � � + � ∑ � � + � ∑ � 2.7

2.3 Kesalahan Standar Estimasi