Pola Angin di Perairan Selat Makasar

2.4 Transformasi Wavelet

Konsep Transformasi Wavelet telah dirumuskan sejak awal 1980-an oleh beberapa ilmuwan seperti Morlet, Grosmann, Daubechies dan lain-lain. Sampai sekarang transformasi Fourier mungkin masih menjadi transformasi yang paling populer di area Pemrosesan Sinyal Digital PSD. Transformasi Fourier memberitahukan informasi frekuensi dari sebuah sinyal, tapi tidak informasi waktu tidak dapat diketahui dimanakapan frekuensi itu terjadi. Karena itulah transformasi Fourier hanya cocok untuk sinyal stationer sinyal yang informasi frekuensinya tidak berubah menurut waktu. Untuk menganalisis sinyal yang frekuensinya bervariasi di dalam waktu, diperlukan suatu transformasi yang dapat memberikan resolusi frekuensi dan waktu disaat yang bersamaan, biasa disebut Analisis Multi Resolusi AMR. AMR dirancang untuk memberikan resolusi waktu yang baik dan resolusi frekuensi yang buruk pada frekuensi tinggi suatu sinyal, serta resolusi frekuensi yang baik dan resolusi waktu yang buruk pada frekuensi rendah suatu sinyal. Pendekatan ini sangat berguna untuk menganalisis sinyal dalam aplikasi-aplikasi praktis yang memang memiliki lebih banyak frekuensi rendah. Wavelet adalah gelombang yang berukuran lebih kecil dan pendek bila dibandingkan dengan sinyal pada sinusoid pada umumnya, di mana energinya terkonsentrasi pada selang waktu tertentu yang digunakan sebagai alat untuk menganalisa sinyal-sinyal non-stasioner Anant and Dowla 1997. Salah satu metoda yang baik untuk menganalisis gelombang sinyal yang terlokalisir adalah wavelet transformation. Transformasi wavelet adalah suatu AMR yang dapat merepresentasikan informasi waktu dan frekuensi suatu sinyal dengan baik. Transformasi wavelet menggunakan sebuah jendela modulasi yang fleksibel, ini yang paling membedakannya dengan Short Time Fourier Transformation STFT, yang merupakan pengembangan dari transformasi Fourier. STFT menggunakan jendela modulasi yang besarnya tetap, ini menyebabkan dilema karena jendela yang sempit akan memberikan resolusi frekuensi yang buruk dan sebaliknya jendela yang lebar akan menyebabkan resolusi waktu yang buruk. Metode transformasi wavelet ini dapat digunakan untuk menapis data atau meningkatkan mutu kualitas data; dapat juga digunakan untuk mendeteksi fenomena varian waktu serta dapat digunakan untuk pemampatan data Foster et al. 1994. Transformasi Wavelet dapat digunakan untuk menunjukkan kelakukan sementara temporal pada suatu sinyal, misalnya dalam bidang geofisika sinyal seismik, fluida, medik dan lain sebagainya. Karena kemampuannya melihat data dari berbagai sisi, wavelet mampu menyederhanakan dan mengurangi noise tanpa memperlihatkan penurunan mutu. Pada transformasi wavelet digunakan istilah translasi dan skala, karena istilah waktu dan frekuensi sudah digunakan oleh transformasi Fourier. Translasi adalah lokasi jendela modulasi saat digeser sepanjang sinyal, berhubungan dengan informasi waktu. Skala berhubungan dengan frekuensi, skala tinggi frekuensi rendah berhubungan dengan informasi global dari sebuah sinyal, sedangkan skala rendah frekuensi tinggi berhubungan dengan informasi detail. Pada dasarnya, transformasi wavelet dapat dibedakan menjadi dua tipe berdasarkan nilai parameter translasi dan skala, yaitu transformasi wavelet kontinu continue wavelet transform, CWT, dan diskrit discrete wavelet transform, DWT. Prinsip kerja CWT dengan menghitung sebuah sinyal dengan sebuah jendela modulasi pada setiap waktu dengan setiap skala yang diinginkan. Jendela modulasi yang mempunyai skala fleksibel inilah yang biasa disebut induk wavelet atau fungsi dasar wavelet. CWT menganalisa sinyal dengan perubahan skala pada window yang dianalisis, pergeseran window dalam waktu dan perkalian sinyal serta mengintegral semuanya sepanjang waktu Polikar 1996. CWT secara matematika dapat didefinisikan sebagai berikut: s, tdt ………..….………………1 dimana γs,τ adalah fungsi sinyal setelah transformasi, dengan variabel s skala dan τ translasi sebagai dimensi baru. ft sinyal asli sebelum transformasi. Fungsi dasar s, t di sebut sebagai wavelet, dengan menunjukkan konjugasi kompleks. Inversi dari CWT dapat didefinisikan sebagai berikut: s, td …..……………..……2 Fungsi dasar wavelet s ,τ t dapat didesain sesuai kebutuhan untuk mendapatkan hasil transformasi yang terbaik, ini perbedaan mendasar dengan transformasi fourier yang hanya menggunakan fungsi sinus sebagai jendela modulasi. Fungsi dasar wavelet secara matematika dapat didefinisikan sebagi berikut: s, t = ……………………….….…….3 faktor digunakan untuk normalisasi energi pada skala yang berubah-ubah. Mexican Hat, yang merupakan normalisasi dari derivatif kedua fungsi Gaussian adalah salah satu contoh fungsi dasar CWT; s, t = 1- ……………………...4 Contoh lain adalah fungsi dasar Morlet, yang merupakan fungsi bilangan kompleks: - …………………...…5 dengan dan 1 + -12 Dibandingkan dengan CWT, DWT dianggap relatif lebih mudah pengimplementasiannya. Prinsip dasar dari DWT adalah bagaimana cara mendapatkan representasi waktu dan skala dari sebuah sinyal menggunakan teknik penapisan digital dan operasi sub-sampling. Sinyal pertama-tama dilewatkan pada rangkain filter high-pass dan low-pass, kemudian setengah dari masing-masing keluaran diambil sebagai sample melalui operasi sub-sampling. Proses ini disebut sebagai proses dekomposisi satu tingkat. Keluaran dari filter low-pass digunakan sebagai masukkan di proses dekomposisi tingkat berikutnya. Proses ini diulang sampai tingkat proses dekomposisi yang diinginkan. Gabungan dari keluaran-keluaran filter high-pass dan satu keluaran filter low-pass yang terakhir, disebut sebagai koefisien wavelet, yang berisi informasi sinyal hasil transformasi yang telah terkompresi. Pasangan filter high-pass dan low-pass yang