Saran The backscatter characteristic of ALOS PALSAR imagery within eucalyptus grandis forest plantation stand
1. Perlu dilakukan penelitian yang sama dengan citra ALOS PALSAR yang
memiliki slope corrected data dan memperbaiki atau mereduksi noise. 2.
Perlu dilakukan kajian backscatter pada hutan tanaman Eucalyptus grandis
di daerah dataran rendah untuk melihat polarisasi HH atau HVdengan karakteristik tempat tumbuh yang berbeda.
DAFTAR PUSTAKA
Awaya,T Takahashi., Y Kiyono, H. Saito, M. Shimada, INS Jaya, MB Saleh and Limin SH. 2009.Landcover Monitoring and Biomass
Estimation Using PALSAR Data in Palangkaraya, Indonesia, dalam; Workshop on Exploring The Use of ALOS PAlSAR for
Forets Resource Management; Development of Forest Degradation Index and Carbon Emission Estimation Method Using
PALSAR Data In Indonesia
. 3 November 2009. DiGiacomo PM, L. Washburn, B Holt, Burton HJ. 2004. Coastal pollution
hazards in southern California observed by SAR imagery: storm water plumes, wastewater plumes, and natural hydro carbon seeps.
Marine Pollution Bulletin 49:1013–1024.
Envisat Environment Satelit.2002. SAR Sample Porduct.PO-MO-ESA-GS- 1005 Envisat Post Launch Product.
Filho P, Wardir RP, SWP Rodrigues ,FR Costa, JC Mura , FD Gonçalves. 2011. Discrimination of coastal wetland environments in the
Amazon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery. Estuarine, Coastal and Shelf Science
30:11.
Harrell PA,BargeauL.L Chavez, Kasischke, E.SN, H.F French, Christensen
N. L. 1995. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest. Remote Sensing of
Environment 54:247-260.
Herman PMJ, Dool AW. 2005. Characterisation of surface roughness and
sediment texture of intertidal flats using ERS SAR imagery. Remote Sensing of Environment 98:96-109.
Jaya, INS 2009.Analisis Citra Dijital ;Prespektif Pengindraan Jauh Untuk Pengelolaan Sumberdaya Alam. Teori dan Praktek menggunakan
ERDAS Imagine Fakultas Kehutanan IPB.
Jansen, 2000.Remote Sensing of TheEnviroment An Earth Resource Perspetif. Univerity of South Carolina. Prentice Hall Upper, New
Jersey. [JAXA] Japan Aerospace Exploration Agency. 2007. ALOS User
Handbook.http:www.eorc.jaxa.jpALOSendocalos_userhb_en.p df [15 Februari 2011
JICA and IPB. 2010. Penafsiran Visual Citra ALOS PALSAR ;Pengenalan Penutupan Lahan Hutan di Indonesia.Versi 2.
Jaenicke J, Englhart S, Siegert F. 2011. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery.
Journal of Environmental Management 92:630-638.
Kaukab M. 2008. Rancang Bangun Simulasi Radar. Modul Pengajaran Fakultas Teknik Univesitas Indonesia 2008.
Latifah S. 2004. Pertumbuhan Dan Hasil Tegakan Eucalyptus Grandi di Hutan Tanaman Industri “Jurnal Fakultas Pertanian Universitas
Sumatera Utara”. Lillesand, MT. and Kiefer RW. 1997. Remote Sensing and Image
Interpretation Dulbahri. PenerjemahSuharyadi, penyutingYogyakarta :GadjahMada University Press
Mattjik, A.A. dan M Sumertajaya. 2000. Perancangan Percobaan: Aplikasi SAS dan Minitab. Jilid 1 IPB Press. Bogor
Onrizal, Cecep Kusmana, M Mansor, Rudi Hartoni. 2009. Estimating aboveground Biomassa and Carbon Stock of planted Eucaluptus
Grandis in Toba Plateau North Sumatera.
Purbaya BSdanAshari. 2005. AnalisisStatistikdengan Microsoft Exeldan SPSS.Yogyakarta :Edisi I PenerbitAndi Yogyakarta.
Purwadhi FSH. 2001.Interpertasi Citra Digital. Jakarta :PT Gramedia Widiasarana Indonesia Jakarta.
Saleh M B. 2010. Modul Pelatihan Penggunaan Citra Alos Palsar Dalam Pemetaan Penutupan Lahan Hutan, Bogor: Kerjasama Japan
International Cooperation Agency JICA dan Fakultas Kehutanan Institut Pertanian Bogor .
Februari 2010. Soesilo, I 1992. Teknolgi Pencinteraan RADAR untuk Kesejahteraan dan
Keamanan, Disampaikan pada persentase Teknis Aplikasi Imaging Radar Untuk Militer di Markas TNI AU, Jakarta 21 November
1992.
Santoso S. 2010. Statistik Multivariat, Konsep dan Aplikasi SPSS. Jakarta :Penerbit PT Elex Media Komputindo.
Shimada M,O Isoguchi.TK Isono. 2009. PALSAR Kalibration Faktor Update. httpsauig.eoc jaxa.JPauigsendokan20090109en_-
3.html [Desember 2009] -------- Shimada and Watanabe. 2007.New Eyes in the Sky: Cloud-Free
Tropical Forest Monitoring for REDD with the Japanese Advanced Land Observing Satellite ALOS. Konvensi Kerangka Kerja PBB
tentang Perubahan Iklim UNFCCC Konferensi Para Pihak COP, 3-14 Desember 2007.
Urso GD, Minacapilli M. 2006. A semi-empirical approach for surface soil water content estimation from radar data without a-priori
information on surface roughness. Journal of Hydrology 321: 297– 310.
Wisnu W, Imam AR, 2000 Penafsiran Luas Bidang Dasar pada Tegakan Jati dengan menggunakan parameter tinggi, diameter tajuk, tinggi
jumlah pohon melalu foto udara Buletin Kehutanan No. 34. 2000.
LAMPIRAN
Lampiran 2 Nilai backsscatter resolusi 50 M
CLUSTER Band_HH Band_HV
Class 1 -6.39500113
-14.90044835 Class 2
-6.679975725 -15.60495232
Class 3 -6.061315042
-13.81542133 Class 4
-5.729104737 -14.15332191
Class 5 -5.815181674
-15.53412859 Class 6
-4.897344465 -13.23595678
Class 7 -5.271090743
-13.85432976 Class 8
-4.959551171 -12.57368401
Class 9 -7.238958061
-15.30005157 Class 10
-5.664277544 -13.94486748
Class 11 -5.939062737
-13.34181462 Class 12
-5.294984041 -14.6229331
Class 13 -5.967564205
-14.38111243 Class 14
-6.144453591 -15.33033806
Class 15 -7.555883521
-15.52902061 Class 16
-5.505306227 -14.43669059
Class 17 -4.73304014
-14.37072933 Class 18
-4.763189169 -14.77723186
Class 19 -5.968687242
-16.36081322 Class 20
-6.429759434 -14.32430372
Class 21 -5.38197072
-15.73107227 Class 22
-6.393758348 -14.95294046
Class 23 -5.130999157
-14.23650176 Class 24
-5.15189077 -13.23009117
Class 25 -4.91114311
-15.03134665 Class 26
-5.240361705 -14.00889445
Class 27 -5.904501046
-14.82427683 Class 28
-5.732031604 -13.74210934
Class 29 -4.638439972
-14.65994524 Class 30
-5.705480245 -13.08172218
Class 31 -7.164632191
-17.11978395 Class 32
-4.862873754 -14.601893
Class 33 -5.392530592
-14.48108231 Class 34
-6.021848019 -13.59601703
Class 35 -5.486089843
-13.41053544 Class 36
-4.835080187 -15.20817136
Class 37 -5.865595845
-14.23239807 Class 38
-5.165451215 -15.10627567
Class 39 -5.503537548
-14.94415547
Lampiran 2 lanjutan nilai backscatter resolusi 50 m
CLUSTER Band_HH Band_HV
Class 40 -5.148363745
-15.07332442 Class 41
-5.554362333 -14.72991049
Class 42 -4.887188316
-13.95848737 Class 43
-5.500167193 -13.05684175
Class 44 -5.794482133
-14.03664966 Class 45
-5.61549003 -13.97798394
Class 46 -6.40613153
-14.36666804 Class 47
-5.858795309 -15.83805368
Class 48 -6.133084194
-14.24188954 Class 49
-5.475320502 -12.62321391
Class 50 -6.437031528
-14.54474301 Class 51
-6.614661552 -14.61996599
Class 52 -5.49944197
-14.15846513 Class 53
-6.43901309 -14.89348034
Class 54 -5.850224201
-14.29248075 Class 55
-4.789113496 -14.62284983
Class 56 -6.176600216
-14.82768596 Class 57
-6.636504523 -14.02091645
Class 58 -6.592915257
-14.29114089 Class 59
-7.291847834 -15.10108803
Class 60 -7.625209491
-15.15222283
Lampiran 3 Nilai backsscater resolusi 6, 25 M
CLUSTER Band_HH Band_HV
Class 1 -7.219056916
-11.80774902 Class 2
-7.048156265 -11.95561331
Class 3 -7.004309284
-11.36511355 Class 4
-6.733000994 -11.54174635
Class 5 -6.226317577
-11.19902002 Class 6
-6.744034151 -13.49274365
Class 7 -6.187547611
-12.57877171 Class 8
-5.986528239 -12.79594704
Class 9 -8.016284563
-12.96605059 Class 10
-6.694322158 -11.44344955
Class 11 -6.196613898
-10.80086382 Class 12
-7.185171116 -12.03095117
Class 13 -5.747803773
-11.02336856 Class 14
-7.444238159 -12.60769144
Class 15 -7.569359443
-12.14857019 Class 16
-6.02177116 -11.00655362
Class 17 -6.720739066
-11.16330342 Class 18
-6.059304712 -12.47735396
Class 19 -5.989360423
-12.81842417 Class 20
-7.112717058 -12.28219192
Class 21 -6.464666609
-13.82436292 Class 22
-7.170806102 -12.06914649
Class 23 -5.765082393
-11.12510248 Class 24
-5.369392507 -10.39552709
Class 25 -5.924788499
-12.67304734 Class 26
-5.814486306 -11.1513715
Class 27 -6.8421392
-12.06347021 Class 28
-7.031723429 -11.89045314
Class 29 -5.98227436
-10.9990616 Class 30
-6.300711416 -10.63857473
Class 31 -6.137783376
-11.93451968 Class 32
-6.710788993 -12.08605766
Class 33 -6.684307518
-11.62825909 Class 34
-6.380386216 -10.9492558
Class 35 -6.313957999
-11.45882727 Class 36
-6.3038814 -12.01677791
Class 37 -7.03450843
-12.10148059 Class 38
-6.59447569 -13.40297133
Class 39 -6.622363173
-12.2783801
Lampiran 3 lanjutan nilai backscatter resolusi 6,25 m
CLUSTER Band_HH Band_HV
Class 40 -6.246333295
-12.00090747 Class 42
-7.05695493 -12.09087473
Class 43 -6.856064299
-11.22581247 Class 44
-6.698725855 -11.85155276
Class 45 -6.640457088
-11.08374912 Class 46
-7.126765665 -11.6531449
Class 47 -6.745533604
-12.55222192 Class 48
-6.643757305 -11.51820989
Class 49 -5.474806538
-10.09460712 Class 50
-6.644399239 -11.93201526
Class 51 -6.797153048
-11.43281191 Class 52
-6.705015886 -11.88337585
Class 53 -7.248735703
-12.22395594 Class 54
-7.038761169 -12.19431796
Class 55 -5.867386098
-12.15997669 Class 56
-6.93495611 -12.11824245
Class 57 -6.534971445
-11.66896984 Class 58
-6.935195457 -11.52908992
Class 59 -8.152072143
-12.56235026 Class 60
-7.009321204 -11.93943293
Lampiran 4 Analisis diskriminan Citra ALOS PALSAR resolusi 6.25 m
Discriminant Notes
Output Created 11-Aug-2011 08:21:41
Comments Input
Data C:\Data_AYUB\Palsar_6.25\Back_komposit
\analisis_5klas_6.25m_final.spv.sav Active Dataset
DataSet1 Filter
none Weight
none Split File
none N of Rows in Working
Data File 60
Missing Value Handling
Definition of Missing User-defined missing values are treated as
missing in the analysis phase. Cases Used
In the analysis phase, cases with no user- or system-missing values for any predictor
variable are used. Cases with user-, system- missing, or out-of-range values for the
grouping variable are always excluded.
Resources Processor Time
0:00:01.297 Elapsed Time
0:00:01.313
Analysis Case Processing Summary
Unweighted Cases N
Percent Valid
60 100.0
Excluded Missing or out-of-range
group codes .0
At least one missing discriminating variable
.0 Both missing or out-of-
range group codes and at least one missing
discriminating variable .0
Total .0
Total 60
100.0
Group Statistics
GRIDCODE Valid N listwise
Mean Std. Deviation
Unweighted Weighted 2
Diameter .148333
.1069268 12
12.000 LAI
.642500 .2180544
12 12.000
Tinggi Pohon 9.681667
5.3939273 12
12.000 Volume Pohon
7.110833 6.5238032
12 12.000
Jumlah Pohon 69.416667
3.5280263 12
12.000 Diameter Tajuk
2.810833 .3160684
12 12.000
Luas Tajuk 627.818333
126.1676328 12
12.000 Kerapatan Pohon
1535.333333 77.9047593
12 12.000
LBDS 6.338833
2.0027173 12
12.000 Biomassa
69.671750 47.9837083
12 12.000
4 Diameter
.060000 .0000000
2 2.000
LAI .725000
.0070711 2
2.000 Tinggi Pohon
2.735000 .3747666
2 2.000
Volume Pohon .505000
.2050610 2
2.000 Jumlah Pohon
75.000000 .0000000
2 2.000
Diameter Tajuk 2.100000
.1414214 2
2.000
Lampiran 4 lanjutan analisis diskriminan
Luas Tajuk 342.635000
51.9087088 2
2.000 Kerapatan Pohon
1659.000000 .0000000
2 2.000
LBDS 3.948500
.4306280 2
2.000 Biomassa
15.576000 4.4830570
2 2.000
5 Diameter
.111087 .0367713
46 46.000
LAI .679348
.1955323 46
46.000 Tinggi Pohon
9.403043 5.5993436
46 46.000
Volume Pohon 7.005217
6.7522272 46
46.000 Jumlah Pohon
67.956522 3.3925181
46 46.000
Diameter Tajuk 2.703261
.3676112 46
46.000 Luas Tajuk
582.468913 147.6644649
46 46.000
Kerapatan Pohon 1503.760870
75.6019355 46
46.000 LBDS
6.071783 2.1645837
46 46.000
Biomassa 69.074174
52.6657638 46
46.000 Total
DBH__M_ .116833
.0591606 60
60.000 Diameter
.673500 .1958019
60 60.000
LAI 9.236500
5.5528914 60
60.000 Tinggi Pohon
6.809667 6.6411825
60 60.000
Volume Pohon 68.483333
3.5960980 60
60.000 Jumlah Pohon
2.704667 .3697616
60 60.000
Diameter Tajuk 583.544333
148.3617486 60
60.000 Luas Tajuk
1515.250000 79.8521144
60 60.000
Kerapatan Pohon 6.054417
2.1193358 60
60.000 LBDS
67.410417 51.3751451
60 60.000
Lampiran 4 lanjutan analisis diskriminan
Tests of Equality of Group Means
Wilks Lambda F
df1 df2
Sig. Diameter
.904 3.037
2 57
.056 LAI
.992 .234
2 57
.792 Tinggi Pohon
.952 1.452
2 57
.243 Volume Pohon
.968 .931
2 57
.400 Jumlah Pohon
.858 4.707
2 57
.013 Diameter Tajuk
.893 3.430
2 57
.039 Luas Tajuk
.892 3.434
2 57
.039 Kerapatan Pohon
.861 4.596
2 57
.014 LBDS
.963 1.101
2 57
.340 Biomassa
.964 1.056
2 57
.355
Boxs Test of Equality of Covariance Matrices
Log Determinants
GRIDCODE Rank
Log Determinant 2
2 12.158
4 .
a
.
b
5 2
12.296 Pooled within-groups
2 12.248
The ranks and natural logarithms of determinants printed are those of the group covariance matrices.
a. Rank 2 b. Too few cases to be non-singular
Test Results
a
Boxs M .812
F Approx.
.252
df1 3
df2 5608.025
Sig. .860
Tests null hypothesis of equal population covariance matrices.
Lampiran 4 lanjutan analisis diskriminan
Stepwise Statistics
Variables EnteredRemoved