Penetapan Kadar Mineralmagnesium, Besi Dan Tembaga Pada Daun Kari(Murraya Koenigii (L.) Spreng) Secara Spektrofotometri Serapan Atom

(1)

(2)

Lampiran 2. Gambar Sampel Daun Kari

a. Tanaman Kari d. Buah kari

b. Daun Kari Segar e. Bunga kari


(3)

Lampiran 3. Gambar Alat Laboratorium Penelitian a. Spektrofotometer Serapan AtomHitachi Z-2000


(4)

(5)

Lampiran 3(Lanjutan)


(6)

Lampiran 4. Bagan Alir Proses Dekstruksi Kering

1. Bagan Alir Proses Dekstruksi Sampel (Daun Kari Segar)

 Dibersihkan dari pengotoran,

 Dicuci bersih dengan air mengalir dan dibilas dengan akua demineralisata,

 Ditiriskan dan dikeringkan dengan cara diangin- anginkan dan dipotong-potong kira-kira ± 1 cm,  Dihaluskan dengan blender dan dihomogenkan.

Abu

Hasil

 Ditambahkan 5 ml HNO3 (1:1),

 Diuapkan pada hot plate sampai kering,

 Dimasukkan kembali kedalam tanur dengan temperatur awal 100oC dan perlahan-lahantemperatur dinaikkan menjadi 500oC dengan interval 25oC setiap 5 menit,

 Dilakukan selama 1 jam dan dibiarkan dingin pada desikator.

 Ditimbang sebanyak 10 g di atas krus porselen,  Diarangkan diatas hot plate,

 Diabukan di tanur dengan temperatur awal 100oC dan perlahan-lahan temperatur dinaikkan menjadi 500oC dengan interval 25oC setiap 5 menit,

 Dilakukan selama 48 jam dan dibiarkan dingin pada desikator.

Sampel yang telah dihaluskan 1 kg Daun Kari Segar


(7)

Lampiran 4 (Lanjutan)

2. Bagan Alir Proses Dekstruksi Sampel (Daun Kari Rebus)

 Dibersihkan dari pengotoran dandicuci dengan air mengalir,

 Dipanaskan akua demineralisata sampai mendidih dan direbus daun kari segar selama 10 menit.

 Diangkat dan ditiriskan.

 Dikeringkan dengan cara diangin-anginkan dan potong-potong kira-kira ± 1 cm,

Abu

Hasil

 Ditambahkan 5 ml HNO3 (1:1),

 Diuapkan pada hot plate sampai kering,

 Dimasukkan kembali kedalam tanur dengan temperatur awal 100oC dan perlahan-lahantemperatur dinaikkan menjadi 500oC dengan interval 25oC setiap 5 menit,

Dilakukan selama 1 jam dan dibiarkan dingin pada desikatorpada desikator.

 Ditimbang sebanyak 10 g di atas krus porselen,  Diarangkan diatas hot plate,

 Diabukan di tanur dengan temperatur awal 100oC dan perlahan-lahan temperatur dinaikkan menjadi 500oC dengan interval 25oC setiap 5 menit,

 Dilakukan selama 48 jam dan dibiarkan dingin pada desikator .

Sampel yang telah dihaluskan 1 kg Daun Kari Segar


(8)

Lampiran 5. Bagan Alir Pembuatan Larutan Sampel

Hasi Destruksi Kering

 Dilarutkan dalam 5 ml HNO3 (1:1),

 Dimasukkan ke dalam labu tentukur 50 ml,

 Dibilas krus porselen dengan akuabides sebanyak 3 kali,

 Dicukupkan volumenya dengan akuademineralisata sampai garis tanda,

 Disaring dengan kertas Whatman No.42 dengan membuang 5 ml untuk menjenuhkan kertas saring.

Larutan Sampel

 Dilakukan pengujian kualitatif,

 Dilakukan pengujian kuantitatif dengan spektrofotometer serapan atom pada (λ =248,3 nm untuk mineralbesi), (λ = 285,2 nm untuk mineralmagnesium) dan pada (λ = 324 nm untuk mineraltembaga).

 Dihitung kandungan mineral besi, magnesium dan tembaga Hasil


(9)

Lampiran 6. Data Hasil Pengukuran Absorbansi Larutan Standar Besi, Magnesium dan Tembaga

1. Data Hasil Pengukuran Absorbansi Larutan Standar Besi No. Konsentrasi (µg/mL)

(X)

Absorbansi (Y)

1 0,0000 0,0001

2 2,0000 0,0463

3 4,0000 0,0882

4 6,0000 0,1330

5 8,0000 0,1733

6 10,0000 0,2147

2. Data Hasil Pengukuran Absorbansi Larutan Standar Magnesium No. Konsentrasi (µg/mL)

(X)

Absorbansi (Y)

1 0,0000 -0,0003

2 0,2000 0,1137

3 0,4000 0,2369

4 0,6000 0,3391

5 0,8000 0,4497

6 1,0000 0,5665

3. Data Hasil Pengukuran Absorbansi Larutan Standar Tembaga No. Konsentrasi (µg/mL)

(X)

Absorbansi (Y)

1 0,0000 -0,0002

2 1,0000 0,0146

3 2,0000 0,0314

4 3,0000 0,0486

5 4,0000 0,0656


(10)

Lampiran 7. Perhitungan Persamaan Garis Regresi 1. Perhitungan Persamaan Garis Regresi Besi

No. X Y X2 Y2 XY

1. 0,0000 0,0001 0,0000 0,0000 0,0000 2. 2,0000 0,0463 4,0000 0,0021 0,0926 3. 4,0000 0,0882 16,0000 0,0078 0,3528 4. 6,0000 0,1330 36,0000 0,0177 0,7980 5. 8,0000 0,1733 64,0000 0,0300 1,3864 6. 10,0000 0,2147 100,0000 0,0461 2,1470 30,0000 0,6556 220,0000 0,1037 4,7768

021411 , 0 6 ) 30 ( 220 6 ) 6556 , 0 )( 30 ( 7768 , 4 ) ( 2 2 2 = − − = ∑ − ∑ ∑ ∑ − ∑ = n X X n Y X XY a 0022 , 0 ) 5 )( 021411 , 0 ( 1092 , 0 = − = − = + = X a Y b X a Y

Maka persamaan garis regresinya adalah : Y=0,021411 X + 0,0022 5,0000

=


(11)

Lampiran 7 (Lanjutan)

{

}{

}

{

}{

}

9998 , 0 9947 , 8 9928 , 8 ) 06556 ( ) 1037 , 0 ( 6 ) 30 ( ) 220 ( 6 ) 6556 , 0 )( 30 ( ) 7768 , 4 ( 6 ) ( ) ( 2 2 2 2 2 2 = = − − − = − − ∑ ∑ − ∑ =

X

X n Y Y

n Y X XY n r

2. Perhitungan Persamaan Garis Regresi Magnesium

56345 , 0 6 ) 3 ( 2 , 2 6 ) 7059 , 1 )( 3 ( 24722 , 1 ) ( 2 2 2 = − − = ∑ − ∑ ∑ ∑ − ∑ = n X X n Y X XY a

No. X Y X2 Y2 XY

1. 0,0000 0,0000 0,0000 0,0000 0,0000 2. 0,2000 0,1137 0,0400 0,0129 0,0227 3. 0,4000 0,2369 0,1600 0,0561 0,0948 4. 0,6000 0,3391 0,3600 0,1150 0,2035 5. 0,8000 0,4497 0,6400 0,2022 0,3598 6. 1,0000 0,5665 1,0000 0,3209 0,5665 3,0000 1,7059 2,2000 0,7071905 1,24722

=


(12)

Lampiran 7 (lanjutan) 0025 , 0 ) 5 , 0 )( 56345 , 0 ( 2842 , 0 = − = − = + = X a Y b X a Y

Maka persamaan garis regresinya adalah : Y=0,56345 X + 0,0025

{

}{

}

{

}{

}

9998 , 0 36689 , 2 36652 , 2 ) 7056 , 1 ( ) 7071905 , 0 ( 6 ) 3 ( ) 2 , 2 ( 6 ) 7056 , 1 )( 3 ( ) 24722 , 1 ( 6 ) ( ) ( 2 2 2 2 2 2 = = − − − = − − ∑ ∑ − ∑ =

X

X n Y Y

n Y X XY n r

3. Perhitungan Persamaan Garis Regresi Tembaga

No. X Y X2 Y2 XY

1. 0,0000 -0,0002 0,0000 0,0000 0,0000 2. 1,0000 0,0146 1,0000 0,0002 0,0146 3. 2,0000 0,0314 4,0000 0,0010 0,0628 4. 3,0000 0,0486 9,0000 0,0024 0,1458 5. 4,0000 0,0656 16,0000 0,0043 0,2624 6. 5,0000 0,0823 25,0000 0,0068 0,4115 15,0000 0,2423 55,0000 0,014638 0,8971

2,5000

=


(13)

Lampiran 7 (lanjutan) 016649 , 0 6 ) 15 ( 55 6 ) 2423 , 0 )( 15 ( 8971 , 0 ) ( 2 2 2 = − − = ∑ − ∑ ∑ ∑ − ∑ = n X X n Y X XY a 00124 , 0 ) 5 , 2 )( 016649 , 0 ( 04038 , 0 − = − = − = + = X a Y b X a Y

Maka persamaan garis regresinya adalah : Y=0,016649 X – 0,00124

{

}{

}

{

}{

}

9998 , 0 7484 , 1 7481 , 1 ) 2423 , 0 ( ) 014635 , 0 ( 6 ) 15 ( ) 55 ( 6 ) 2423 , 0 )( 15 ( ) 8971 , 0 ( 6 ) ( ) ( 2 2 2 2 2 2 = = − − − = − − ∑ ∑ − ∑ =

X

X n Y Y

n Y X XY n r


(14)

Lampiran 8. Hasil Pengujian Kandungan Mineral Besi, Magnesium dan Tembaga dalam Sampel

A. Sampel Daun Kari Segar

1. Hasil Pengujian Kandungan MineralBesi No.

Sampel

Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0913 0,1369 6,2906 3,1170

2. 10,0156 0,1360 6,2486 3,1197

3. 10,0276 0,1354 6,2205 3,1019

4. 10,0357 0,1358 6,2392 3,1088

5. 10,0697 0,1361 6,2532 3,1055

6. 10,0840 0,1370 6,2953 3,1217

2. Hasil Pengujian Kandungan Mineral Magnesium No.

Sampel

Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0913 0,3692 0,6507 64,4912

2. 10,0156 0,3654 0,6440 64,2997

3. 10,0276 0,3690 0,6504 64,8609

4. 10,0357 0,3676 0,6479 64,5595

5. 10,0697 0,3652 0,6436 63,9244

6. 10,0840 0,3654 0,6440 63,8635

3. Hasil Pengujian Kandungan Mineral Tembaga No.

Sampel

Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0910 0,0414 2,5611 0,6345

2. 10,0155 0,0416 2,5731 0,6423

3. 10,0257 0,0411 2,5430 0,6340

4. 10,0570 0,0413 2,5551 0,6365

5. 10,0680 0,0413 2,5551 0,6344


(15)

Lampiran 8 (Lanjutan) B. Sampel Daun Kari Rebus

1. Hasil Pengujian Kandungan Mineral Besi No.

Sampel

Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0204 0,1285 5,8983 2,9434

2. 10,0158 0,1282 5,8843 2,9378

3. 10,0182 0,1275 5,8516 2,9207

4. 10,0178 0,1284 5,8936 2,9418

5. 10,0286 0,1275 5,8516 2,9177

6. 10,0431 0,1287 5,9076 2,9414

2. Hasil Pengujian Kandungan MineralMagnesium No.

Sampel

Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0204 0,3398 0,5986 59,7381

2. 10,0158 0,3407 0,6002 59,9253

3. 10,0182 0,3384 0,5961 59,5017

4. 10,0178 0,3323 0,5852 58,4260

5. 10,0286 0,3398 0,5986 59,6893

6. 10,0431 0,3393 0,5977 59,5135

3. Hasil Pengujian Kandungan Mineral Tembaga No.

Sampel

Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0104 0,0366 2,2728 0,5671

2. 10,0155 0,0369 2,2908 0,5718

3. 10,0183 0,0365 2,2667 0,5657

4. 10,0187 0,0367 2,2788 0,5687

5. 10,0268 0,0369 2,2908 0,5711


(16)

Lampiran 9. Contoh Perhitungan Kandungan Mineral Besi, Magnesium dan Tembaga Dalam Sampel

A.Contoh Perhitungan Kandungan MineralBesi, Magnesium dan Tembaga pada Daun Kari Segar

1. Contoh Perhitungan Kandungan MineralBesi Berat sampel yang ditimbang = 10,0913 g Absorbansi (Y) = 0,1369

Persamaan Regresi : Y =0,021411 X + 0,0022

X = 6,2911µg/mL

21411 0,0 22 0,00 -369 0,1 =

Konsentrasi Ferrum = 6,2911 µg/mL

2. Contoh Perhitungan Kandungan MineralMagnesium Berat sampel yang ditimbang = 10,0913 g

Absorbansi (Y) = 0,3692

Persamaan Regresi : Y =0,56345 X +0,0025

X = 0,6508µg/mL

56345 0,

025 0,0 3693

0, − =

Konsentrasi Magnesium = 0,6508µg/mL g 100 / mg 3,1170 / µg 31,1703 g 10,0913 1 m 50 / µg 6,2911 (g) Sampel Berat n Pengencera Faktor (mL) Volume mL) / µg ( i Konsentras ) 100 / ( Mineral Kandungan = = × × = × × = g L mL g mg g 10,0913 00 2 m 50 / µg 0,6508 (g) Sampel Berat n Pengencera Faktor (mL) Volume mL) / µg ( i Konsentras ) 100 / ( Mineral Kandungan × × = × × = L mL g mg


(17)

Lampiran 9 (Lanjutan)

3. Contoh Perhitungan Kandungan MineralTembaga Berat sampel yang ditimbang = 10,0910 g

Absorbansi (Y) = 0,0414

Persamaan Regresi : Y =0,016649X− 0,00124

X = 2,5611 µg/mL

016649 0,

0124 0,0 0414

0, + =

Konsentrasi Cupri = 2,5611µg/mL

g 100 / mg 6345 , 0

/ µg 3448 , 6

g 10,0910

1 m 25 /

µg 2,5611

(g) Sampel Berat

n Pengencera Faktor

(mL) Volume mL)

/ µg ( i Konsentras

) 100 / ( Mineral Kandungan

= =

× ×

=

× ×

=

g

L mL

g mg


(18)

Lampiran 9 (Lanjutan)

B.Contoh Perhitungan Kandungan Mineral Besi, Magnesium dan Tembagapada Daun Kari Rebus

1. Contoh Perhitungan Kadar Besi

Berat sampel yang ditimbang = 10,0204 g

Absorbansi (Y) = 0,1285

Persamaan Regresi : Y =0,021411 X+0,0022

X = 5,8988 µg/mL

21411 0,0 0022 , 0 285

0,1 − =

Konsentrasi Besi = 5,8988µg/mL

2. Contoh Perhitungan Kandungan Mineral Magnesium Berat sampel yang ditimbang = 10,0204 g

Absorbansi (Y) = 0,3398

Persamaan Regresi : Y =0,56345 X + 0,0025

X = 0,5986 µg/mL

56345 0, 0025 , 0 3398

0, − =

Konsentrasi Magnesium = 0,5986µg/mL g 100 / mg 2,9434 / µg 4339 , 29 g 10,0204 1 m 50 / µg 5,8988 (g) Sampel Berat n Pengencera Faktor (mL) Volume mL) / µg ( i Konsentras ) 100 / ( Mineral Kandungan = = × × = × × = g L mL g mg / µg 3813 , 597 g 10,0204 200 m 50 / µg 0,5986 (g) Sampel Berat n Pengencera Faktor (mL) Volume mL) / µg ( i Konsentras ) 100 / ( Mineral Kandungan = × × = × × = g L mL g mg


(19)

Lampiran 9 (Lanjutan)

3. Contoh Perhitungan Kandungan MineralTembaga Berat sampel yang ditimbang = 10,0104 g

Absorbansi (Y) = 0,0366

Persamaan Regresi : Y =0,016649 X − 0,00124

X = 2,2729 µg/mL

016649 0,

00124 , 0 0366

0, + =

Konsentrasi Tembaga = 2,2729µg/mL

g 100 / mg 5671 , 0

/ µg 6707 , 5

g 10,0104

1 m 5 2 /

µg 2,2729

(g) Sampel Berat

n Pengencera Faktor

(mL) Volume mL)

/ µg ( i Konsentras

) 100 / ( Mineral Kandungan

= =

× ×

=

× ×

=

g

L mL

g mg


(20)

Lampiran 10.Perhitungan Statistik Kandungan Mineral Besipada Sampel 1. Perhitungan Statistik Kandungan MineralBesi pada Daun Kari Segar

No. Xi

Kadar (mg/100g)

Xi

X

2 ) (XiX

1 3,1170 0,0046 0,0000208544

2 3,1197 0,0073 0,0000528044

3 3,1019 -0,0105 0,000110951

4 3,1088 -0,0036 0,0000132011

5 3,1055 -0,0069 0,0000480711

6 3,1217 0,0093 0,0000858711

18,6746

3,1124

=

X

0,000331753

mg/100g 00815

, 0

1 -6

000331753 ,

0 1

-)

-( 2

= = =

n X Xi SD

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5 diperoleh nilaittabel = α/2, dk = 2,5706

Data diterima jika

t

hitung

< t

tabel.

Thitung =

n / SD

X -Xi

Thitung 1 = 1,3939 6

/ 00815 , 0

0,0046

=

Thitung 2 = 2,2121 6

/ 00815 , 0

0073 ,


(21)

Lampiran 10 (Lanjutan)

Thitung 3 = 3,1818 6 / 00815 , 0 0,0105 -=

Thitung 4 = 1,0909 6 / 00815 , 0 0,0036 -=

Thitung 5 = 2,0909 6 / 00815 , 0 0069 , 0 -=

Thitung 6 = 2,8182 6 / 00815 , 0 0093 , 0 =

Dari hasil perhitungan diatas thitung3 dan thitung6 > ttabel, maka semua data tersebut ditolak.

Maka dibuat perhitungan statistik yang baru

No. Xi

Kadar (mg/100g) XiX

2 ) (XiX

1 3,1170 0,0042 0,0000180625

2 3,1197 0,0069 0,0000483025

3 3,1088 -0,0040 0,0000156025

4 3,1055 -0,0072 0,0000525625

12,4510 1128 , 3 = X 0,00013453 mg/100g 0067 , 0 1 -4 00013453 , 0 1 ) -( 2

= = = n X Xi SD


(22)

Lampiran 10 (Lanjutan)

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 4-1 = 3 diperoleh nilai ttabel= α/2, dk = 3,1824

Data diterima jika thitung< ttabel

Thitung 1 = 1,2353 4

/ 0067 , 0

0,0042

=

Thitung 2 = 2,0294 4

/ 0067 , 0

0,0069

=

Thitung 3 = 1,1765 4

/ 0067 , 0

0,0040

-=

Thitung 4 = 2,1176 4

/ 0067 , 0

,0072 0

=

Kandungan mineral besi sebenarnya pada daun kari segar adalah )

n / SD x ) dk , 2 /

α

( t ( ± x =

μ

= 3,1128 ± 3,1824 x 0,0067/√4


(23)

Lampiran 10 (Lanjutan)

2. Perhitungan Statistik Kandungan Mineral Besi pada Daun Kari Rebus

No. Xi

Kadar (mg/100g)

Xi

X

2 ) (XiX

1 2,9434 0,0096 0,00009216

2 2,9378 0,0040 0,000016

3 2,9207 -0,0131 0,00017161

4 2,9418 0,0080 0,000064

5 2,9177 -0,0161 0,00025921

6 2,9414 0,0076 0,00005776

17,6028

9338 , 2

=

X

0,00066074

g /100 0115

, 0

1 -6 0,00066074

1

-)

-( 2

mg n

X Xi SD

= = =

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5 diperoleh nilaittabel = α/2, dk = 2,5706

Data diterima jika

t

hitung

< t

tabel.

Thitung =

n / SD

X -Xi

Thitung 1 = 2,0426 6

/ 0115 , 0

0,0096

=

Thitung 2 = 0,8511 6

/ 0115 , 0

0040 , 0


(24)

Lampiran 10 (Lanjutan)

Thitung 3 = 2,7872 6 / 0115 , 0 0,0131 -=

Thitung 4 = 1,7021 6 / 0115 , 0 0,0080 =

Thitung 5 = 3,4255 6 / 0115 , 0 0161 , 0 -=

Thitung 6 = 1,6170 6 / 0115 , 0 0076 , 0 =

Dari hasil perhitungan diatas thitung3 dan thitung5> ttabel, maka semua data tersebut ditolak.

Maka dibuat perhitungan statistik yang baru

No. Xi

Kadar (mg/100g) XiX

2 ) (XiX

1 2,9434 0,0023 0,00000529

2 2,9378 -0,0033 0,00001089

3 2,9418 0,0007 0,00000049

4 2,9414 0,0003 0,00000009

11,7644 9411 , 2 = X 0,00001676 mg/100g 0024 , 0 1 -4 00001676 , 0 1 ) -( 2

= = = n X Xi SD


(25)

Lampiran 10 (Lanjutan)

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 4-1 = 3 diperoleh nilai ttabel= α/2, dk = 3,1824

Data diterima jika thitung< ttabel

Thitung 1 = 1,9167 4

/ 0024 , 0

0,0023

=

Thitung 2 = 2,7500 4

/ 0024 , 0

0,0033

-=

Thitung 3 = 0,5833 4

/ 0024 , 0

0,0007

=

Thitung 4 = 0,2500 4

/ 0024 , 0

,0003 0

=

Kandungan mineral besi sebenarnya pada daun kari rebus adalah n

/ SD x t

( ± X =

μ (a/2,dk)

= 2,9411 ± 3,1824 x 0,0024/√4


(26)

Lampiran 11. Perhitungan Statistik Kandungan Mineral Magnesium pada Sampel

1. Perhitungan Statistik Kandungan MineralMagnesium pada Daun Kari Segar

No. Xi

Kadar (mg/100g)

Xi

X

2 ) (XiX

1 64,4912 0,1580 0,024964

2 64,2997 -0,0335 0,00112225

3 64,8609 0,5277 0,27846729

4 64,5595 0,2263 0,05121169

5 63,9244 -0,4088 0,16711744

6 63,8635 -0,4697 0,22061809

385,9992

3332 , 64

=

X

0,74350036

/100g 3856

, 0

1 -6 0,74350036

1

-)

-( 2

mg n

X Xi SD

= = =

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5 diperoleh nilaittabel = α/2, dk = 2,5706

Data diterima jika

t

hitung

< t

tabel.

Thitung =

n / SD

X -Xi

Thitung 1 = 1,0038 6

/ 3856 , 0


(27)

Lampiran 11 (Lanjutan)

Thitung 2 = 0,2128 6 / 3856 , 0 0335 , 0 =

Thitung 3 = 3,3526 6 / 3856 , 0 0,5277 =

Thitung 4 = 1,4377 6 / 3856 , 0 0,2263 =

Thitung 5 = 2,5972 6 / 3856 , 0 4088 , 0 -=

Thitung 6 = 2,9841 6 / 3856 , 0 4697 , 0 = −

Dari hasil perhitungan diatas thitung3, thitung5 dan thitung6> ttabel, maka semua data tersebut ditolak.

Maka dibuat perhitungan statistik yang baru

No. Xi

Kadar (mg/100g) XiX

2 ) (XiX

1 64,4912 0,0411 0,001686471

2 64,2997 -0,1504 0,022630188

3 64,5595 0,1094 0,011961068

193,3504 4501 , 64 = X 0,036277727 mg/100g 1347 , 0 1 -3 036277727 , 0 1 ) -( 2

= = = n X Xi SD


(28)

Lampiran 11 (Lanjutan)

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 3-1 = 2 diperoleh nilai ttabel= α/2, dk = 4,3027

Data diterima jika thitung< ttabel

Thitung 1 = 0,5283 3

/ 1347 , 0

0,0041

=

Thitung 2 = 1,9332 3

/ 1347 , 0

0,1504

-=

Thitung 3 = 1,4062 3

/ 1347 , 0

0,1094

=

Kandungan mineral magnesium sebenarnya pada daun kari segar adalah n

/ SD x t

( ± X =

μ (a/2,dk)

= 64,4501 ± 4,3027 x 0,1347/√3

= (64,4501± 0,3348) mg/100g

2. Perhitungan Statistik KandunganMineral Magnesium pada Daun Kari Rebus

No. Xi

Kadar (mg/100g)

Xi

X

2 ) (XiX

1 59,7381 0,2725 0,074247167

2 59,9253 0,4597 0,211308767

3 59,5017 0,0361 0,001302007

4 58,4260 -1,0396 1,080802814

5 59,6892 0,2236 0,049989507

6 59,5134 0,0478 0,002283247

356,7937

4656 , 59

=

X


(29)

Lampiran 11 (Lanjutan) mg/100g 5329 , 0 1 -6 8 1,41993350 1 ) -( 2

= = = n X Xi SD

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5 diperoleh nilaittabel = α/2, dk = 2,5706

Data diterima jika

t

hitung

< t

tabel.

Thitung =

n / SD X -Xi

Thitung 1 = 1,2753 6 / 5329 , 0 0,2725 =

Thitung 2 = 2,1126 6 / 5329 , 0 4597 , 0 =

Thitung 3 = 0,1659 6 / 5329 , 0 0,0361 =

Thitung 4 = 4,7776 6 / 5329 , 0 1,0396 -=

Thitung 5 = 1,0276 6 / 5329 , 0 2236 , 0 =

Thitung 6 = 0,2197 6 / 5329 , 0 0478 , 0 =

Dari hasil perhitungan diatas thitung4 > ttabel, maka semua data tersebut ditolak. Maka dibuat perhitungan statistik yang baru


(30)

Lampiran 11 (Lanjutan)

No. Xi

Kadar (mg /100g)

Xi

X

2 ) (XiX

1 59,7381 0,0646 0,004167994

2 59,9253 0,2518 0,063383098

3 59,5017 -0,1718 0,029528986

4 59,6892 0,0157 0,000245236

5 59,5134 -0,1601 0,02564482

298,6735 6735 , 59 = X 0,122970132 mg/100g 1753 , 0 1 -5 122970132 , 0 1 ) -( 2

= = = n X Xi SD

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5-1 = 4 diperoleh nilai ttabel= α/2, dk = 2,7765

Data diterima jika thitung< ttabel

Thitung 1 = 0,8240 5 / 1753 , 0 0,0646 =

Thitung 2 = 3,2117 5 / 1753 , 0 0,2518 =

Thitung 3 = 2,1913 5 / 1753 , 0 0,1718 - =

Thitung 4 = 0,2003 5 / 1753 , 0 0,0157 =


(31)

Lampiran 11 (Lanjutan)

Thitung 5 = 2,0421 5

/ 1753 , 0

1601 , 0

= −

Dari hasil perhitungan diatas thitung2> ttabel, maka semua data tersebut ditolak. Maka dibuat perhitungan statistik yang baru

No. Xi

Kadar (mg /100g)

Xi

X

2 ) (XiX

1 59,7381 0,1275 0,01625625

2 59,5017 -0,1089 0,01185921

3 59,6892 0,0786 0,00617796

4 59,5134 -0,0972 0,00944784

298,6735

6106 , 59

=

X

0,04374126

mg/100g 1207

, 0

1 -4 04374126 ,

0 1

)

-( 2

= = =

n X Xi SD

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 4-1 = 3 diperoleh nilai ttabel= α/2, dk = 3,1824

Data diterima jika thitung< ttabel

Thitung 1 = 2,1109 4

/ 1207 , 0

0,1275

=

Thitung 2 = 1,8030 4

/ 1207 , 0

0,1089


(32)

Lampiran 11 (Lanjutan)

Thitung 3 = 1,3013 4

/ 1207 , 0

0,0786

=

Thitung 4 = 1,6093 4

/ 1207 , 0

0,0972

-=

Kandungan mineral magnesium sebenarnya pada daun kari rebus adalah n

SD x t

X ±( (a/2,dk) /

=

µ

= 59,6106± 3,1824 x 0,1207/ 4 = (59,6106± 0,1922) mg /100g


(33)

Lampiran 12. Perhitungan Statistik Kandungan Mineral Tembaga dalam Sampel

1. Perhitungan Statistik Kandungan Mineral Tembaga pada Daun Kari Segar

No. Xi

Kadar (mg/100g)

Xi

X

2 ) (XiX

1 0,6345 -0,0019 0,0000034225

2 0,6423 0,0060 0,0000354025

3 0,6340 -0,0023 0,0000055225

4 0,6365 0,0001 0,0000000225

5 0,6344 -0,0020 0,0000038025

6 0,6364 0,0000 0,0000000025

3,8181

6364 , 0

=

X

0,000048175

g mg/100 0031

, 0

1 -6

000048175 ,

0 1

-)

-( 2

= = =

n X Xi SD

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5 diperoleh nilaittabel = α/2, dk = 2,5706

Data diterima jika

t

hitung

< t

tabel.

Thitung =

n / SD

X -Xi

Thitung 1 = 1,4615 6

/ 0013 , 0

0,0019


(34)

Lampiran 12 (Lanjutan)

Thitung 2 = 4,6154 6

/ 0013 , 0

0060 , 0

=

Thitung 3 = 1,7692 6

/ 0013 , 0

0,0023

-=

Thitung 4 = 0,0768 6

/ 0013 , 0

0,0001

=

Thitung 5 = 1,5385 6

/ 0013 , 0

0020 , 0

= −

Thitung 6 = 0 6 / 0013 , 0

0000 ,

0 =

Dari hasil perhitungan diatas thitung2 > ttabel, maka semua data tersebut ditolak. Maka dibuat perhitungan statistik yang baru

No. Xi

Kadar (mg /100g)

Xi

X

2 ) (XiX

1 0,6345 -0,0007 0,0000004356

2 0,6340 -0,0012 0,0000013456

3 0,6365 0,0013 0,0000017956

4 0,6344 -0,0008 0,0000005776

5 0,6364 0,0012 0,0000015376

3,1758

6352 , 0

=

X


(35)

Lampiran 12 (Lanjutan) mg/100g 0012 , 0 1 -5 000005692 , 0 1 ) -( 2

= = = n X Xi SD

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5-1 = 4 diperoleh nilai ttabel= α/2, dk = 2,7765

Data diterima jika thitung< ttabel

Thitung 1 = 1,4000 5 / 0012 , 0 0,0007 -=

Thitung 2 = 2,4000 5 / 0012 , 0 0,0012 -=

Thitung 3 = 2,6000 5 / 0012 , 0 0,0013 =

Thitung 4 = 1,6000 5 / 0012 , 0 0,0008 - =

Thitung 5 = 2,4000 5 / 0012 , 0 0012 , 0 =

Kandungan mineral tembaga sebenarnya pada daun kari segar adalah n

SD x t

X ±( (a/2,dk) /

=

µ

= 0,6352± 2,7765 x 0,0012/ 5 = (0,6352± 0,0014) mg/100g


(36)

Lampiran 12 (Lanjutan)

2. Perhitungan Statistik Kandungan Mineral Tembaga pada Daun Kari Rebus

No. Xi

Kadar (mg/100g)

Xi

X

2 ) (XiX

1 0,5671 -0,0013 0,00000160444

2 0,5718 0,0034 0,0000117878

3 0,5657 -0,0027 0,00000711111

4 0,5687 0,0003 0,00000011111

5 0,5711 0,0027 0,00000747111

6 0,5658 -0,0026 0,00000658778

3,4102

5684 , 0

=

X

0,0000346733

mg/100g 0026

, 0

1 -6

33 0,00003467

1

-)

-( 2

= = =

n X Xi SD

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5 diperoleh nilaittabel = α/2, dk = 2,5706

Data diterima jika

t

hitung

< t

tabel.

Thitung =

n / SD

X -Xi

Thitung 1 = 1,1818 6

/ 0026 , 0

0,0013

-=

Thitung 2 = 3,0909 6

/ 0026 , 0

0034 , 0


(37)

Lampiran 12 (Lanjutan)

Thitung 3 = 2,4545 6 / 0026 , 0 0,0027 -=

Thitung 4 = 0,2727 6 / 0026 , 0 0,0003 =

Thitung 5 = 2,4545 6 / 0026 , 0 0027 , 0 =

Thitung 6 = 2,3636 6 / 0026 , 0 0026 , 0 =

Dari hasil perhitungan diatas thitung2 > ttabel, maka semua data tersebut ditolak. Maka dibuat perhitungan statistik yang baru

No. Xi

Kadar (mg /100g)

Xi

X

2 ) (XiX

1 0,5671 -0,0006 0,0000003364

2 0,5657 -0,0020 0,0000039204

3 0,5687 0,0010 0,0000010404

4 0,5711 0,0034 0,0000116964

5 0,5658 -0,0019 0,0000035344

2,8394 5677 , 0 = X 0,000020528 mg/100g 0023 , 0 1 -5 000020528 , 0 1 ) -( 2

= = = n X Xi SD


(38)

Lampiran 12 (Lanjutan)

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 5-1 = 4 diperoleh nilai ttabel= α/2, dk = 2,7765

Data diterima jika thitung< ttabel

Thitung 1 = 0,6000 5

/ 0023 , 0

0,0006

-=

Thitung 2 = 2,0000 5

/ 0023 , 0

0,0020

-=

Thitung 3 = 1,0000 5

/ 0023 , 0

0,0010

=

Thitung 4 = 3,4000 5

/ 0023 , 0

0,0034

=

Thitung 5 = 1,9000 5

/ 0023 , 0

0019 ,

0 =

Dari hasil perhitungan diatas thitung4 > ttabel, maka semua data tersebut ditolak. Maka dibuat perhitungan statistik yang baru

No. Xi

Kadar (mg /100g)

Xi

X

2 ) (XiX

1 0,5671 0,0003 0,000000076

2 0,5657 -0,0011 0,000001266

3 0,5687 0,0019 0,000003516

4 0,5658 -0,0010 0,000001051

2,2673

5668 , 0

=

X


(39)

Lampiran 12 (Lanjutan)

mg/100g 0014

, 0

1 -4

0000059075 ,

0 1

)

-( 2

= = =

n X Xi SD

Pada interval kepercayaan 95% dengan nilai α = 0,05 dk = 4-1 = 3 diperoleh nilai ttabel= α/2, dk = 3,1824

Data diterima jika thitung< ttabel

Thitung 1 = 0,4286 4

/ 0014 , 0

0,0003

=

Thitung 2 = 1,5714 4

/ 0014 , 0

0,0011

-=

Thitung 3 = 2,7143 4

/ 0014 , 0

0,0019 =

Thitung 4 = 1,4286 4

/ 0014 , 0

0,0010

- =

Kandungan mineral tembaga sebenarnya pada daun kari segar adalah n

/ SD x t

( ± X =

μ (a/2,dk)

= 0,5668 ± 3,1824 x 0,0014/√4


(40)

Lampiran 13. Rekapitulasi Data Kandungan MineralBesi, Magnesium dan Tembagapada Daun Kari (Murraya koenigii) Sebelum Uji-t.

Mineral Sampel No.

Berat Sampel (g)

Absorbansi Kadar (mg/100g)

Besi

Daun Kari Segar

1. 10,0913 0,1369 3,1703 2. 10,0156 0,1360 3,1197 3. 10,0276 0,1354 3,1019 4. 10,0357 0,1358 3,1088 5. 10,0697 0,1361 3,1055 6. 10,0840 0,1370 3,1217

Rata-rata 3,1124

SD 0,00815

Besi

Daun Kari Rebus

1. 10,0204 0,1285 2,9434 2. 10,0158 0,1282 2,9378 3. 10,0182 0,1275 2,9207 4. 10,0178 0,1284 2,9418 5. 10,0286 0,1275 2,9177 6. 10,0431 0,1287 2,9414

Rata-rata 2,9338

SD 0,0115

Magnesium

Daun Kari Segar

1. 10,0913 0,3692 64,4912 2. 10,0156 0,3654 64,2997 3. 10,0276 0,3690 64,8609 4. 10,0357 0,3676 64,5595 5. 10,0697 0,3652 63,9244 6. 10,0840 0,3654 63,8635

Rata-rata 64,3332


(41)

Lampiran 13 (Lanjutan) Mineral Sampel No.

Berat Sampel (g)

Absorbansi Kadar (mg/100g)

Magnesium

Daun Kari Rebus

1. 10,0204 0,3398 59,7381 2. 10,0158 0,3407 59,9253 3. 10,0182 0,3384 59,5017 4. 10,0178 0,3323 58,4260 5. 10,0286 0,3398 59,6893 6. 10,0431 0,3393 59,5135

Rata-rata 59,4656

SD 0,5329

Tembaga

Daun Kari Segar

1. 10,0910 0,0414 0,6345 2. 10,0155 0,0416 0,6423 3. 10,0257 0,0411 0,6340 4. 10,0570 0,0413 0,6365 5. 10,0680 0,0413 0,6344 6. 10,0838 0,0496 0,6364

Rata-rata 0,6364

SD 0,0031

Tembaga

Daun Kari Rebus

1. 10,0104 0,0366 0,5671 2. 10,0155 0,0369 0,5718 3. 10,0183 0,0365 0,5657 4. 10,0187 0,0367 0,5687 5. 10,0268 0,0369 0,5711 6. 10,0340 0,0366 0,5658

Rata-rata 0,5684


(42)

Lampiran 14. Rekapitulasi Data Kandungan MineralBesi, Magnesium dan Tembaga pada Daun Kari (Murraya koenigii) Setelah Uji-t. Mineral Sampel No.

Berat Sampel

(g)

Absorbansi Kadar (mg/100g)

Besi

Daun Kari Segar

1. 10,0913 0,1369 3,1170 2. 10,0156 0,1360 3,1197 3. 10,0357 0,1358 3,1088 4. 10,0697 0,1361 3,1055

Rata-rata 3,1128

SD 0,0067

Kadar Sebenarnya 3,1128± 0,01082

Besi

Daun Kari Rebus

1. 10,0204 0,1285 2,9434 2. 10,0158 0,1282 2,9378 3. 10,0178 0,1284 2,9418 4. 10,0431 0,1287 2,9414

Rata-rata 2,9411

SD 0,0024

Kadar Sebenarnya 2,9411± 0,0038

Magnesium

Daun Kari Segar

1. 10,0913 0,3692 64,4912 2. 10,0156 0,3654 64,2997 3. 10,0357 0,3676 64,5595

Rata-rata 64,4501

SD 0,1347

Kadar Sebenarnya 64,4501± 0,3348

Magnesium

Daun Kari Rebus

1. 10,0204 0,3398 59,7381 3. 10,0182 0,3384 59,5017 3. 10,0286 0,3398 59,6893 4. 10,0431 0,3393 59,5135

Rata-rata 59,6106

SD 0,1207

Kadar Sebenarnya 59,6106 ± 0,1922

Tembaga

Daun Kari Segar

1. 10,0910 0,0414 0,6345 2. 10,0257 0,0411 0,6340 3. 10,0570 0,0413 0,6365 4. 10,0680 0,0413 0,6344 5. 10,0838 0,0496 0,6364

Rata-rata 0,6352

SD 0,0012


(43)

Lampiran 14. (lanjutan)

Tembaga

Daun Kari Rebus

1. 10,0104 0,0366 0,5671 3. 10,0183 0,0365 0,5657 4. 10,0187 0,0367 0,5687 6. 10,0340 0,0366 0,5658

Rata-rata 0,5668

SD 0,0014


(44)

Lampiran 15. Pengujian Beda Nilai Rata-Rata Kandungan Mineral Besipada Daun Kari

No. Daun Kari Segar Daun Kari Rebus 1 X1 = 3,1128 X2 = 2,9411 2 S1 = 0,0067 S2 = 0,0024

Dilakukan uji F dengan tarafkepercayaan 95% untuk mengetahui apakah variasi kedua populasi sama (σ1=σ2 ) atau bebeda (σ1 ≠ σ2 ).

− Ho : σ1 = σ2 H

1 : σ1 ≠ σ2

− Nilai kritis F yang diperoleh dari tabel (F

0,05/2 (3,3))adalah = 7,15 Daerah kritis penerimaan : -7,15≤ F

o≤ 7,15 Daerah kritis penolakan : F

o <-7,15 dan Fo>7,15

F

o =

S12 �22 = 0,0067

2

0,00242 = 7,7934

− Dari hasil ini menunjukkan bahwa Ho ditolak dan H

1 diterima sehingga disimpulkan bahwa σ1 ≠ σ2 , simpangan bakunya adalah:

S

p=

(�1−1)�12+ (�2−1)�22 �1 + �2 − 2

=

(4−1)0,0067

2 + (41)0,00242 4+ 4 − 2


(45)

Lampiran 15 (Lanjutan)

Ho : μ

1 =

μ

2

H

1 :

μ

1

≠ μ

2

− Dengan menggunakan taraf kepercayaan 95% →

t

0,05/2= ± 2,2281 untuk df =

4+4-2 = 6

− Daerah kritis penerimaan : -2,2281≤ t

o≤2,2281 Daerah kritis penolakan : t

o < -2,2281dan to >2,2281

t

o =

(��1−��2) ���S121 + S22

�2

=

(3,1128−2,9411)

0,0117�0,00672

4 + 0,00242

4

=

4.124,05

Karena

t

o=4.124,05>2,2281 maka hipotesis ditolak. Berarti terdapat perbedaan

yang signifikan rata-rata kandungan mineral besi dalam daun kari segar dan daun kari rebus.


(46)

Lampiran 16. Pengujian Beda Nilai Rata-Rata Kandungan Mineral Magnesiumpada Daun Kari

No. Daun Kari Segar Daun Kari Rebus

1 X1 = 64,4501 X2 = 59,6106

2 S1 = 0,1347 S2 = 0,1207

Dilakukan uji F dengan tarafkepercayaan 95% untuk mengetahui apakah variasi kedua populasi sama (σ1=σ2 ) atau bebeda (σ1 ≠ σ2 ).

− Ho : σ1 = σ2 H

1 : σ1 ≠ σ2

− Nilai kritis F yang diperoleh dari tabel (F

0,05/2 (2,3))adalah = 7,15 Daerah kritis penerimaan : -7,15 ≤ F

o≤ 7,15 Daerah kritis penolakan : F

o <-7,15 dan Fo>7,15

F

o =

S12 �22 = 0,1347

2

0,12072 = 1,2454

− Dari hasil ini menunjukkan bahwa Ho diterima dan H

1 ditolak sehingga disimpulkan bahwa σ1 = σ

2 , simpangan bakunya adalah:

S

p=

(�1−1)�12+ (�2−1)�22 �1 + �2 − 2

=

(3−1)0,1347

2 + (41)0,12072 3 + 4 − 2


(47)

Lampiran 16 (Lanjutan)

Ho : μ

1 =

μ

2

H

1 :

μ

1

≠ μ

2

− Dengan menggunakan taraf kepercayaan 95% →

t

0,05/2= ± 2,2281 untuk df =

3+4-2 = 5

− Daerah kritis penerimaan : -2,2281 ≤ t

o≤2,2281 Daerah kritis penolakan : t

o < -2,2281dan to >2,2281

t

o =

(��1−��2) ���11 + 1

2

=

(64,4501−59,6106 )

0,2122�1

3 + 1 4

=

29,8605

Karena

t

o=29,8605>2,2281 maka hipotesis ditolak. Berartiterdapat perbedaan

yang signifikan rata-rata kandungan mineral magnesium dalam daun kari segar dan daun kari rebus.


(48)

Lampiran 17. Pengujian Beda Nilai Rata-Rata Kandungan Mineral Tembaga pada Daun Kari

No. Daun Kari Segar Daun Kari Rebus

1 X1 = 0,6352 X2 = 0,5668

2 S1 = 0,0012 S2 = 0,0014

Dilakukan uji F dengan tarafkepercayaan 95% untuk mengetahui apakah variasi kedua populasi sama (σ1=σ2 ) atau bebeda (σ1 ≠ σ2 ).

− Ho : σ1 = σ2 H

1 : σ1 ≠ σ2

− Nilai kritis F yang diperoleh dari tabel (F

0,05/2 (4,3))adalah = 7,15 Daerah kritis penerimaan : -7,15 ≤ F

o≤ 7,15 Daerah kritis penolakan : F

o <-7,15 dan Fo>7,15

F

o =

S12 �22 = 0,0012

2

0,00142 = 0,7347

− Dari hasil ini menunjukkan bahwa Ho diterima dan H

1 ditolak sehingga disimpulkan bahwa σ1 = σ

2 , simpangan bakunya adalah:

S

p=

(�1−1)�12+ (�2−1)�22 �1 + �2 − 2

=

(5−1)0,0012

2 + (41)0,00142 5 + 4 − 2


(49)

Lampiran 17 (Lanjutan)

Ho : μ

1 =

μ

2

H

1 :

μ

1

≠ μ

2

− Dengan menggunakan taraf kepercayaan 95% →

t

0,05/2= ± 2,2281 untuk df =

6+6-2 = 10

− Daerah kritis penerimaan : -2,2281 ≤ t

o≤2,2281 Daerah kritis penolakan : t

o < -2,2281dan to >2,2281

t

o =

(��1−��2) ���11 + 1

�2

=

(0,6352−0,5668) 0,0026�1

5 + 1 4

=

39,2172

Karena

t

o= 39,2172>2,2281maka hipotesis ditolak. Berarti terdapat perbedaan

yang signifikan rata-rata kandungan mineral tembaga dalam daun kari segar dan daun kari rebus.


(50)

Lampiran 18. Perhitungan Batas Deteksi (LOD) dan Batas Kuantitasi (LOQ) Besi, Magnesium dan Tembaga

1. Perhitungan Batas Deteksi (LOD) dan Batas Kuantitasi (LOQ) Besi Y = 0,021411 X + 0,0022

Slope = 0,021411

No.

Konsentrasi (µg/mL)

(X)

Absorbansi

(Y) (Yi) (Y-Yi)

(Y-Yi)2 ( x 10-6) 1. 0,0000 0,0001 0,0022 -0,0021 4,410 2. 2,0000 0,0463 0,045022 0,001278 1,633 3. 4,0000 0,0882 0,087844 0,000356 0,127 4. 6,0000 0,1330 0,130666 0,002334 5,448 5. 8,0000 0,1733 0,173488 -0,00019 0,003 6. 10,0000 0,2147 0,21631 -0,00161 2,592

30,0000 14,245 x 10-6

µg/mL 10 8871 , 1 4 10 x 14,245 2 -) -( 3 -6 -2

x n Yi Y SD = = = mL x Slope SD x / µg 26441 , 0 0,021411 0018871 , 0 3 3 (LOD) Deteksi Batas = = = mL x Slope SD x / µg 88137 , 0 021411 , 0 0018871 , 0 10 10 (LOQ) Kuantitasi Batas = = =


(51)

Lampiran 18 (Lanjutan)

2. Perhitungan Batas Deteksi (LOD) dan Batas Kuantitasi (LOQ) Magnesium Y = 0,56345 X + 0,0025

Slope = 0,56345

No.

Konsentrasi (µg/mL)

X

Absorbansi

Y Yi Y-Yi (Y-Yi)

2

1. 0,0000 0,0000 0,00250 -0,00250 0,00000625 2. 0,2000 0,1137 0,06656 0,04714 0,00222178 3. 0,4000 0,2369 0,13598 0,10092 0,01018458 4. 0,6000 0,3391 0,19357 0,14553 0,02118018 5. 0,8000 0,4497 0,25588 0,19382 0,03756485 6. 1,0000 0,5665 0,32169 0,24481 0,05992977

3,0000 0,13108741

µg/mL 18103 , 0 4 0,13108741 2 -) -(

2 = = = n Yi Y SD mL x Slope SD x / µg 96387 , 0 56345 , 0 18103 , 0 3 3 (LOD) Deteksi Batas = = = mL x Slope SD x / µg 21288 , 3 56345 , 0 18103 , 0 10 10 (LOQ) Kuantitasi Batas = = =


(52)

Lampiran 18 (Lanjutan)

3. Perhitungan Batas Deteksi (LOD) dan Batas Kuantitasi (LOQ) Tembaga Y = 0,016649 X - 0,00124

Slope = 0,016649

No.

Konsentrasi (µg/mL)

X

Absorbansi

Y Yi Y-Yi (Y-Yi)

2

1. 0,0000 -0,0002 -0,0012 0,00104 0,0000011 2. 1,0000 0,0146 -0,001 0,01560 0,0002433 3. 2,0000 0,0314 -0,0007 0,03212 0,0010315 4. 3,0000 0,0486 -0,0004 0,04903 0,0024040 5. 4,0000 0,0656 -0,0001 0,06575 0,0043228 6. 5,0000 0,0823 0,00013 0,08217 0,0067519

15,0000 0,0147545

µg/mL 00369 , 0 4 0,0147545 2 -) -(

2 = = = n Yi Y SD mL x Slope SD x / µg 6648 , 0 016649 , 0 00369 , 0 3 3 (LOD) Deteksi Batas = = = mL x Slope SD x LOQ uantitasi / µg 2161 , 2 016649 , 0 00369 , 0 10 10 ) ( K Batas = = =


(53)

Lampiran 19. Hasil Uji Perolehan Kembali Besi, Magnesium dan TembagaSetelah Penambahan Larutan Standar

1. Hasil Pengujian Kandungan Mineral Besi Setelah Ditambahkan Larutan Standar Besi Sebanyak 1,5mL (Konsentrasi 100 µg/mL)

No. Berat Sampel (g) Absorbansi Kandungan Mineral (mg/100g) Kandungan Mineral+La rutan Baku (mg/100g) Kadar Larutan Baku (mg/100g) Perolehan kembali (%) 1. 10,0320 0,2058 3,1170 4,7394 1,4955 108,8

2. 10,0442 0,2001 3,1197 4,6011 1,4934 99,7

3. 10,0570 0,2018 3,1019 4,6347 1,4015 102

4. 10,0220 0,1996 3,1088 4,5997 1,4967 99,4

5. 10,0360 0,2064 3,1055 4,7514 1,4946 109,7 6. 10,0166 0,2069 3,1217 4,7723 1,4975 110,8 X 60,2078 10,0346 1,2206 0,2034 18,6746 3,1124 28,0987 4,68311 8,8792 1,4799 630,4 105,07

2. Hasil Pengujian Kandungan Magnesium Setelah Ditambahkan Larutan Standar Magnesium Sebanyak 3,2 mL (Konsentrasi 1000 µg/mL)

No. Berat Sampel (g) Absorbansi Kandungan Mineral (mg/100g) Kandungan Mineral+La rutan Baku (mg/100g) Kadar Larutan Baku (mg/100g) Perolehan kembali (%) 1. 10,0320 0,5582 64,4912 98,3054 31,8979 103,22 2. 10,0442 0,5649 64,2997 99,3708 31,8592 109,97 3. 10,0570 0,5658 64,8610 99,4404 31,8186 110,22 4. 10,0220 0,5609 64,5595 98,8824 31,9298 108,20 5. 10,0360 0,5640 63,9244 98,9364 31,8852 108,52 6. 10,0166 0,5616 63,8635 99,0656 31,9470 108,72 X 60,2078 10,0346 3,3754 0,5626 385,9994 64,3332 594,0009 99,0002 191,3377 31,8896 648,85 108,14


(54)

Lampiran 19(Lanjutan)

3. Hasil Analisis Tembaga Setelah Ditambahkan Larutan Standar Tembaga Sebanyak 3 mL (Konsentrasi 10µg/mL)

No.

Berat Sampel

(g)

Absorbansi

Kandungan Mineral (mg/100g)

Kandungan Mineral+La

rutan Baku (mg/100g)

Kadar Larutan

Baku (mg/100g)

Perolehan kembali

(%) 1. 10,0310 0,0646 0,6345 0,9856 0,2991 116,78 2. 10,0270 0,0644 0,6423 0,9829 0,2992 115,84 3. 10,0413 0,0642 0,6340 0,9786 0,2988 114,56 4. 10,0162 0,0642 0,6365 0,9811 0,2995 115,13 5. 10,0283 0,0638 0,6344 0,9739 0,2992 112,83 6. 10,0290 0,0630 0,6364 0,9753 0,2991 113,34

X

60,3239 10,0540

0,3842 0,0640

3,8181 0,6364

5,8774 0,9796

1,7948 0,2991

688,48 114,75


(55)

Lampiran 20. Perhitungan Uji Perolehan Kembali Besi, Magnesium dan Tembaga dalam Sampel

1. Perhitungan Uji Perolehan Kembali Kandungan Mineral Besi Persamaan Regresi : Y = 0,021411 X + 0,0022

5091 , 9 021411 , 0 0022 , 0 -0,2058 = = X

Konsentrasi Besisetelah ditambahkan larutan baku = 9,5091µg/mL

g mg g x mL x g mL x x CF 100 / 7394 , 4 / µg 3939 , 47 1 50 0320 , 10 / µg 5091 , 9 n Pengencera Faktor ) (mL Volume (g) sampel Berat (µg/mL) i Konsentras = = = =

Kadar sampel sebelum ditambah larutan standar (CA) =3,1124mg/100g Kadar sampel setelah ditambah larutan standar (CF) = 4,7394mg/100g Berat sampel rata-rata uji recovery = 10,0346 g Kadarlarutan standar yang ditambahkan (C*A)

g g mL x g mL x C A 100 / mg 4948 , 1 / µg 9483 , 14 5 , 1 0346 , 10 / µg 100 n ditambahka yang mL rata -rata sampel Berat n ditambahka yang mineral i Konsentras * = = = = % 84 , 108 % 100 100 / mg 4955 , 1 100 / mg 1124 , 3 -100 / 7394 , 4 % 100 * Besi Kembali Perolehan 0 0 = = = x g g g mg x C C C A F


(56)

Lampiran 20 (Lanjutan)

2. Perhitungan Uji Perolehan Kembali Kandungan Mineral Magnesium Persamaan Regresi : Y = 0,56345 X + 0,0025

9852 , 0 56345 , 0 0025 , 0 -5582 0, = = X

Konsentrasi Magnesium setelah ditambahkan larutan baku =0,9852µg/mL

g g x mL x g mL x x CF 100 / mg 3054 , 98 / µg 0542 , 983 200 50 0320 , 10 / µg 9852 , 0 n Pengencera Faktor ) (mL Volume (g) sampel Berat /mL) (µg i Konsentras = = = =

Kadar sampel sebelum ditambah larutan standar (CA) =64,3332mg/100g Kadar sampel setelah ditambah larutan standar (CF) = 98,3054mg/100g Berat sampel rata-rata uji recovery = 10,0346 g

Kadarlarutan standar yang ditambahkan (C*A)

g g mL x g mL x C A 100 / mg 8897 , 31 / µg 8966 , 318 2 , 3 0346 , 10 / µg 1000 n ditambahka yang mL rata -rata sampel Berat n ditambahka yang mineral i Konsentras * = = = = % 53 , 106 % 100 100 / mg 8979 , 31 100 / 3332 , 64 -100 / 3054 , 98 % 100 * -Magnesium Kembali Perolehan 0 0 = = = x g g mg g mg x C C C A F


(57)

Lampiran 20 (Lanjutan)

3. Perhitungan Uji Perolehan Kembali Kandungan Mineral Tembaga Persamaan Regresi : Y = 0,016649 X – 0,00124

9426 , 3 016649 , 0 00124 , 0 + 0644 0, = = X

Konsentrasi Tembagasetelah ditambahkan larutan baku = 3,9426µg/mL

g g x mL x g mL x x CF 100 / mg 9830 , 0 / µg 8299 , 9 1 25 0270 , 10 / µg 9426 , 3 n Pengencera Faktor ) (mL Volume (g) sampel Berat /mL) (µg i Konsentras = = = =

Kadar sampel sebelum ditambah larutan standar (CA) =0,6364mg/100g Kadar sampel setelah ditambah larutan standar (CF) = 0,9830mg/100g Berat sampel rata-rata uji recovery = 10,0288 g Kadarlarutan standar yang ditambahkan (C*A)

g g mL x g mL x C A 100 / mg 2991 , 0 / µg 9914 , 2 3 0288 , 10 / µg 10 n ditambahka yang mL rata -rata sampel Berat n ditambahka yang mineral i Konsentras * = = = = % 88 , 115 % 100 100 / mg 2991 , 0 100 / 6364 , 0 -100 / mg 9830 , 0 % 100 * -Tembaga Kembali Perolehan 0 0 = = = x g g mg g x C C C A F


(58)

Lampiran 21. Perhitungan Simpangan Baku Relatif (RSD) Besi, Magnesium dan Tembaga dalam Sampel

1. Perhitungan Simpangan Baku Relatif (RSD) Besi dalam Sampel No.

Kadar % Perolehan Kembali

(Xi)

( Xi-X ) ( Xi-X )2

1. 108,8 3,7167 13,8136

2. 99,7 -5,3833 28,9803

3. 102,1 -2,9833 8,9003

4. 99,4 -5,6833 32,3003

5. 109,7 4,6167 21,3136

6. 110,8 5,7167 32,6803

630,5 137,9883

X 105,1

2533 , 5

1 -6

9883 , 137

1 -n

) X -(Xi

∑ 2

= = = SD

% 9984 , 4

% 100 1

, 105

2533 , 5

% 100

= = =

x x X SD RSD


(59)

Lampiran 21 (Lanjutan)

2. Perhitungan Simpangan Baku Relatif (RSD) Magnesium dalam Sampel No.

Kadar % Perolehan Kembali

(Xi)

( Xi-X ) ( Xi-X )2

1. 103,22 -4,9217 24,2228

2. 109,97 1,8283 3,3428

3. 110,22 2,0783 4,3195

4. 108,20 0,0583 0,0034

5. 108,52 0,3783 0,1431

6. 108,72 0,5783 0,3345

648,85 32,3661

X 108,1417

5443 , 2

1 -6

3661 , 32

1 -n

) X -(Xi

∑ 2

= = = SD

% 3527 , 2

% 100 1417 , 108

5443 , 2

% 100

= = =

x x X SD RSD


(60)

Lampiran 21 (Lanjutan)

3. Perhitungan Simpangan Baku Relatif (RSD) Tembaga dalam Sampel No.

Kadar %

Perolehan Kembali (Xi)

( Xi-X ) ( Xi-X )2

1. 116,78 2,0267 4,1074

2. 115,88 1,1267 1,2694

3. 114,56 -0,1933 0,0374

4. 115,13 0,3767 0,1419

5. 112,83 -1,9233 3,6992

6. 113,34 -1,4133 1,9975

688,52 11,2527

X 114,7533

5002 , 1

1 -6

2527 , 11

1 -n

) X -(Xi

∑ 2

= = = SD

% 3073 , 1

% 100 7533 , 114

5002 , 1

% 100

= = =

x x X SD RSD


(61)

(62)

(63)

DAFTAR PUSTAKA

Biswas, A.K., Chatli, M.K., Sahoo, J. (2012). Antioxidant potential of curry (Murraya KoenigiiL.) and mint (Mentha spicata) Leaf extract and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage.Food chemistry 133, 467-472.

Chowdhury, J.U., Bhuiyan, Md. N.I., Yussuf, M. (2008).Chemical composition of the leaf essential oils of Murrayakoenigii (L.) Spreng and Murrayapaniculata (L.) Jack, Bangladesh J Pharmacol. 1 (3): 59-63.

Devi, N. (2010). Nutrition and Food Gizi untuk Keluarga. Jakarta: Buku Kompas. Halaman:94.

Ditjen POM. (1979). Farmakope Indonesia. Edisi Ketiga. Jakarta: Departemen Kesehatan RI. Halaman:650, 737.

Ermer, J., dan McB. Miller, J.H. (2005). Method Validation in Pharmaceutical Analysis. Weinheim: Wiley-Vch Verlag GmbH & Co.KGaA. Halaman:250, 253.

Farooqi, A.A., Sreeramu, B.S., Srinivasappa, K.N. (2005). Cultivation of Spice Crops. India: Universities Press (India) Private Limited. Halamana: 150-152

Gandjar, I.G., dan Rohman, A. (2008). Kimia Farmasi Analisis. Cetakan III. Yogyakarta: Pustaka Pelajar. Halaman:298-322.

Harmita. (2004). Petunjuk Pelaksanaan Validasi Metode dan Cara Perhitungannya. Review Artikel. Majalah Ilmu Kefarmasian. 1 (3): 117, 118, 120, 123, 135.

Harris, D. C. (2007). Quantitative Chemistry Analysis. USA: Craig Bleyer. Halaman: 455

Horne, M. M., dan Swearingen, P.L. (1993). Pocket Guide To Fluid, Electrolyte, and Acid-Base Balance. Edisi 2. Penerjemah: Dewi, I.N., dan Ester, M., Editor: Yasmin Asih. (2000) Keseimbangan Cairan, Elektrolit Dan Asam Basa. Jakarta: EGC. Halaman:125-126.


(64)

Jarald, E.E., Sheeja, E., Parial, S., Arya, H., Bajpai, A., Nahata, B.R. (2008). Morphoanatomy of stems of Murraya koenigii Spreng.Journal of Biological Sciences.8 (3): 654-658.

Kee, Joyce L. (1996). Farmakologi, Pendekatan Proses Keperawatan. Jakarta: EGC. Halaman: 179, 184.

Khopkar, S.M. (1984). Basic Concepts of Analytical Chemistry. Penerjemah: Saptoraharjo, A., dan Nurhadi, A. (2008). Konsep Dasar Kimia Analitik. Jakarta: UI-Press. Halaman: 81, 296.

Lawal, H., Atiku, M.K., Khelpai, D.G., Wannang, N.N. (2008). Hypoglycemic and hypolipidaemic effect of the aqueous leaf extract of murraya koenigii in normal and alloxan-diabetic rats. Journal of physiological Sciences. 23 (1-2): 37-40

Lieberman, S., dan Bruning. N. (2001). The Real Vitamin and Mineral Book. 4th Edition. USA: Pinguin Group. Halaman: 16, 199.

LIPI. (2015). Pusat Penelitian Biologi. Herbarium Bogoriense. Bogor

Mayes, A.P. (2000). Nutrition. Dalam: Harper’s Biochemistry. Edisi 25. Muray, R. K., Granner, D. K., Mayes, P. A., Rodwell, V. W. (2000) Penerjemah: Hartono, A. Editor: Bani, A.P., dan Sikumbang, T.M.N. (2003). Biokimia Harper. Edisi dua puluh lima. Jakarta: EGC. Halaman:627-628.

Poedjiadi,A. (1994). Dasar-Dasar Biokimia. Jakarta: UI-Press. Hal. 420

Rand, M. L., dan Murray, R. K. (2000). Plasma Protein, Imunoglobulin, and blood Coagulation.Dalam: Harper’s Biochemistry. Edisi 25. Muray, R. K., Granner, D. K., Mayes, P. A., Rodwell, V. W. (2000) Penerjemah: Hartono, A. Editor: Bani, A.P., dan Sikumbang, T.M.N. (2003). Biokimia Harper. Edisi dua puluh lima. Jakarta: EGC. Halaman:706-708.

Singh, S., Omre, P.K., dan Mohan, S.M. (2014). Curry Leave(Murraya koenigii Linn. Sprengal)A Miracle Plant. Journal of Agricultural and Food Chemistry. 4(1): 46-52.

Subramanian, R., Gayathri, S., Rathnavel, C., dan Raj, V. (2012).Analysis of Mineral and Heavy Metals in some Medicinal Plants Colllected from Local Market. Review Atrikel. Asian Pasific Journal of Tropical Biomedicine. Department of Chemistry Periyar University. India.2(1):74-77.

Sudjana. (2002). Metode Statistika. Edisi VI. Bandung: Tarsito. Halaman: 93, 168, 239, 250.


(65)

Suttle, N. F. (2010). Mineral Nutriton of Livestock. 4th Edition. UK: CABI. Halaman: 3, 92

Svehla, G. (1979). Textbook of Macro and Semimicro Qualitative Inorganic Analysis. Bagian I. Penerjemah: Hadyana Pudjaatmaka. (1990). Analisis Anorganik Kualitatif Makro dan Semimikro. Jakarta: Penerbit Kalman Media Pustaka. Halaman: 262, 263,301,307.

Tambayong, J. (2000). Patofisiologi untuk Keperawatan. Jakarta: EGC. Halaman:31.


(66)

BAB III

METODE PENELITIAN

3.1Tempat dan Waktu Penelitian

Penelitian dilakukan diLaboratorium Penelitian Fakultas Farmasi USU. 3.2 Sampel

Sampel yang digunakan dalam penelitian ini adalah daun kari (Murraya koeningii (L.) Spreng)yang diambil secara purposifpada pekarangan rumah di Jalan Tempua kawasan kota Medan. Sampel tersebut terdiri dari daun kari segar dan daun kari rebus.

3.3 Bahan dan Alat 3.3.1. Bahan-bahan

Semua bahan yang digunakan dalam penelitian ini berkualitas pro analisis keluaran E. Merck kecuali disebutkan lain yaitu asam nitrat 65% v/v, larutan standar (magnesium, besi dan tembaga) serta akua demineralisata (Laboratorium Penelitian Fakultas Farmasi USU).

3.3.2. Alat-alat

Spektrofotometer Serapan Atom (Hitachi Z-2000) dengan tipe nyala udara-asetilen lengkap dengan lampu katoda Mg, Fe dan Cu, neraca analitik (ANDGF 200), tanur (Stuart), blender, hot plate, kertas saring Whatman no. 42, krus porselen, spatula, botol kacadan peralatan gelas(Pyrex).


(67)

3.4 Pembuatan Pereaksi 3.4.1 Larutan HNO3 (1:1)

Diencerkan sebanyak 50 mL larutan HNO3 65%dengan 50 mL aquademineralisata (Ditjen POM., 1979).

3.4.2 Larutan Kuning Titan0,1% b/v

Dilarutkan 0,1 g titan yellow dalam 100 ml aquadest (Svehla,1979). 3.4.3 Larutan NaOH 2 N

Sebanyak 80,02 g Natrium hidroksida dilarutkan dalam aquadest hingga 1000 ml (Ditjen POM., 1979)

3.4.4 Larutan NH4CNS 0,1 N

Dilarutkan 8 g ammonium tiosianat dalam air hingga 1000 ml (Ditjen POM., 1979)

3.4.5 Larutan NH4OH 1 N

Ammonium hidroksida 25% b/b sebanyak 7,4 ml diencerkan dalam 100 ml akuades (Ditjen POM., 1979)

3.5 Prosedur Penelitian 3.5.1 Pengambilan Sampel

Sampel yang digunakan adalah daun kari, dimana terdiri dari daun kari segar dan daun kari yang direbus, sampel diambil secara purposif pada pekarangan rumah di kawasan jalan Tempua daerah kota Medan.Metode pengambilan sampel secara purposif iniditentukan atas dasar pertimbangan bahwa sampel yang diambil mempunyai karakteristik yang sama dengan sampel yang ada dan dianggap sebagai sampel representatif (Sudjana, 2002).


(68)

3.5.2 Penyiapan Sampel a. Daun Kari Segar

Dibersihkan sebanyak 1 kg daun kari yang segar dari pengotoran, dicuci bersih dengan air mengalir, kemudian dicuci kembali dengan akua demineralisata dan ditiriskan. Selanjutnya dikeringkan dengan cara diangin-anginkan selama ± 1 jam, lalu dipotong-potong kira-kira ± 1 cm dan dihaluskan denganblender.

b. Daun Kari Rebus

Dibersihkan sebanyak 1 kg daun kari yang segar dari pengotoran, dicuci bersih dengan air mengalir, kemudian dicuci kembali dengan akua demineralisata dan ditiriskan kemudian direbus dengan akua demineralisata sampai mendidih selama 10 menit pada suhu 80-100°C. Selanjutnya diangkat dan ditiriskan kemudian dikeringkan dengan cara diangin-anginkan selama ± 2 jam sampai daun benar-benar kering, lalu dipotong-potong kira-kira ± 1 cm dan dihaluskan denganblender.

3.5.3 Proses Destruksi

Ditimbang sampel yang telah dihaluskan (daun kari segar dan daun kari rebus), masing-masing sebanyak 10 gram, dimasukkan ke dalam krus porselen, kemudian diarangkan di atas hot plate selama 8 jam sampai terbentuk arang, didinginkan, kemudian dimasukkan ke dalam tanur untuk diabukan, diatur suhu tanur sampai 500°C. Pengabuan dilakukan selama 48 jam dan setelah itu dibiarkan hingga dingin, kemudian dipindahkan ke desikator. Ditambahkan lagi 5 mL larutan HNO3 pekat ke dalam abu, kemudian diuapkan pada hotplate sampai kering. Dimasukkan kembali krus porselen ke dalam tanur untuk diabukan, diatur


(69)

suhu tanur sampai 500°C. Pengabuan dilakukan selama 1 jam dan dibiarkan hingga dingin, kemudian dipindahkan ke desikator.

3.5.4 Pembuatan Larutan Sampel

Dilarutkan sampel hasil destruksi dengan 5 mL HNO3 dan dimasukkan ke dalam labu tentukur 50 mL, dibilas krus porselen hingga tiga kali, kemudian larutan dicukupkan dengan akua demineralisata hingga garis tanda (Horwitz, 2000). Kemudian disaring filtratnya dengan kertas Whatman No.42,dibuang 5 mL filtrat pertamauntuk menjenuhkan kertas saring, kemudian ditampung filtrat selanjutnyadalam botol. Filtrat ini digunakan sebagai larutan sampel untuk dianalisis secara kualitatif dan kuantitatif.

3.5.5 Analisis Secara Kualitatif 3.5.5.1Magnesium

Kedalam tabung reaksi dimasukkan 2 ml larutan sampel, ditambah 5-6 tetes NaOH 2 N dan 3 tetes pereaksi Titan yellow(0.1% b/v). Dihasilkan endapan atau larutan warna merah (Svehla, 1979).

3.5.5.2Besi

a. Menggunakan larutan K4Fe[(CN)6] 2N

Diteteskan sebanyak 1-2 tetes larutan sampel hasil destruksi pada plat tetes, kemudian ditetesi dengan larutan Kalium heksasianoferat (II) 2 N. Terbentuk endapan berwarna biru tua (Svehla, 1979)

b. Menggunakan larutan NH4SCN 0,1 N

Kedalam tabung reaksi dimasukkan 2 ml larutan sampel hasil destruksi, tambahkan 3 tetes ammonium tiosianat 0,1 N. Terbentuk larutan berwarna merah(Svehla, 1979).


(70)

3.5.5.3Tembaga

Kedalam tabung reaksi dimasukkan 5 ml larutan sampel hasil destruksi, tambahkan 5 tetes ammonium hidroksida 1 N terbentuk endapan biru (Svehla, 1979).

3.5.6 Analisis Secara Kuantitatif

3.5.6.1Pembuatan Kurva Kalibrasi Magnesium

Dipipet larutan baku magnesium(1000 µg/mL) sebagai LIB I (larutan induk baku I) sebanyak 1 mL, dimasukkan ke dalam labu tentukur 100 mL dan dicukupkan dengan akua demineralisata hingga garis tanda(konsentrasi 10 µg/mL) digunakan sebagai LIB II (larutan induk baku II). Dari larutan LIB II tersebut (10 µg/mL) dipipet masing-masing0,5 mL; 1,0 mL; 1,5 mL; 2,0 mL dan 2,5 mL, kemudian dimasukkan ke dalam labu tentukur 25 mL dan dicukupkan dengan akua demineralisata hingga garis tanda sehingga diperoleh konsentrasi berturut-turut 0,2 µg/mL; 0,4 µg/mL; 0,6 µg/mL; 0,8 µg/mL dan 1,0µg/mL. Kemudian diukur kurva kalibrasi magnesiumpada panjang gelombang 285,2 nm dengan tipe nyala udara-asetilen (Gandjar dan Rohman, 2008).

3.5.6.2Pembuatan Kurva Kalibrasi Besi

Dipipet larutan baku besi(1000 µg/mL) sebagai LIB I (larutan induk bakuI) sebanyak 5 mL, dimasukkan ke dalam labu tentukur 50 mL dan dicukupkan dengan akua demineralisata hingga garis tanda(konsentrasi 100 µg/mL) digunakan sebagai LIB II (larutan induk baku II). Dari larutan LIB II tersebut (100 µg/mL) dipipet masing-masing0,5 mL; 1,0 mL; 1,5 mL; 2,0 mL dan 2,5 mL, kemudian dimasukkan ke dalam labu tentukur 25 mL dan dicukupkan


(71)

dengan akua demineralisata hingga garis tanda sehingga diperoleh konsentrasi berturut-turut 2,0 µg/mL; 4,0 µg/mL; 6,0 µg/mL; 8,0 µg/mL dan 10,0 µg/mL. Kemudian diukur kurva kalibrasi besipada panjang gelombang 248,3 nm dengan tipe nyala udara-asetilen (Gandjar dan Rohman, 2008).

3.5.6.3Pembuatan Kurva Kalibrasi Tembaga

Dipipet larutan baku tembaga(1000 µg/mL) sebagai LIB I (larutan induk baku I) sebanyak 5 mL, dimasukkan ke dalam labu tentukur 50 mL dan dicukupkan dengan akua demineralisata hingga garis tanda(konsentrasi 100 µg/mL) digunakan sebagai LIB II (larutan induk baku II). Dari larutan LIB II tersebut (100 µg/mL) dipipet masing-masing0,5 mL;1,0 mL;1,5 mL; 2,0 mL dan 2,5 mL, kemudian dimasukkan ke dalam labu tentukur 50 mL dan dicukupkan dengan akua demineralisata hingga garis tanda sehingga diperoleh konsentrasi berturut-turut 1,0 µg/mL; 2,0 µg/mL; 3,0 µg/mL; 4,0 µg/mL dan 5,0µg/mL. Kemudian diukur kurva kalibrasi tembagapada panjang gelombang 324 nm dengan tipe nyala udara-asetilen(Gandjar dan Rohman, 2008).

3.5.6.4Penetapan KadarMineralMagnesium

Dipipet masing-masing larutan sampel (daun kari segar dan daun kari rebus) sebanyak 0,25 mL, dimasukkan ke dalam labu tentukur 50 mL(faktor pengenceran = 200 kali) dan dicukupkan dengan akua demineralisatahingga garis tanda. Lalu diukur absorbansinya dengan menggunakan spektrofotometer serapan atom yang telah dikondisikan dan diatur metodenya, dimana pengujian kadar Magnesium dilakukan pada panjang gelombang 285,2 nm. Nilai absorbansi yang diperoleh harus berada dalam rentang kurva kalibrasi larutan bakuMagnesium.


(72)

Konsentrasi magnesium dalam sampel ditentukan berdasarkan persamaan garis regresi dari kurva kalibrasi.

3.5.6.5Penetapan Kadar MineralBesi

Larutan sampel(daun kari segar dan daun kari rebus) dimasukkan ke dalam labu tentukur 50 mL dan dicukupkan dengan akua demineralisatahingga garis tanda. Lalu diukur absorbansinya dengan menggunakan spektrofotometer serapan atom yang telah dikondisikan dan diatur metodenya, dimana pengujian kadar Besi dilakukan pada panjang gelombang 248,3 nm. Nilai absorbansi yang diperoleh harus berada dalam rentang kurva kalibrasi larutan bakubesi. Konsentrasi besi dalam sampel ditentukan berdasarkan persamaan garis regresi dari kurva kalibrasi. 3.5.6.6Penetapan Kadar MineralTembaga

Larutan sampel (daun kari segar dan daun kari rebus) dimasukkan ke dalam labu tentukur 25 mL dan dicukupkan dengan akua demineralisatahingga garis tanda. Lalu diukur absorbansinya dengan menggunakan spektrofotometer serapan atom yang telah dikondisikan dan diatur metodenya, dimana pengujian kadar tembaga dilakukan pada panjang gelombang 324 nm. Nilai absorbansi yang diperoleh harus berada dalam rentang kurva kalibrasi larutan bakutembaga.

3.5.7 Perhitungan Kadar Besi, Magnesium dan Tembaga dalam Sampel Kadar besi, magnesium dan tembaga dalam sampel dapat dihitung dengan cara sebagai berikut:

Kadar (µg/g) = C × V × Fp

W

Keterangan: C = konsentrasi logam dalam larutan sampel (µg/mL) V = volume larutan sampel (mL)

Fp = faktor pengenceran W = berat sampel (g)


(73)

3.5.8 Analisis Data Secara Statistik

Menurut Gandjar dan Rohman (2008), besi, magnesium dan tembaga yang diperoleh dari hasil pengukuran masing-masing larutan sampel diuji secara statistik dengan cara menghitung standar deviasi menggunakan rumus sebagai berikut:

��=�∑(Xi−X�) 2

n−1

Keterangan: Xi = kadar sampel

�� = kadar rata-rata sampel N = jumlah pengulangan

Kadar yang diperoleh dari hasil pengukuran masing-masing ke enam larutan sampel diuji secara statistik dengan uji t.

Dengan adanya uji t maka dapat diketahui data ditolak atau diterima dan dapat dihitung dengan menggunankan rumus sebagai berikut

Thitung =

n / SD

X -Xi

Hasil pengujian atau nilai thitung yang diperoleh ditinjau terhadap tabel distribusi t, apabila thitung >ttabel maka data tersebut ditolak.

Menurut Sudjana (2002), untuk mengetahui kadar besi, magnesium dan tembaga di dalam sampel dengan interval kepercayaan 99%, α = 0.05, dk = n-1, dapat digunakan rumus sebagai berikut:

μ=��±�(1 2�, ��)

x SD⁄√n Keterangan: µ = kadar mineral


(74)

t = harga t tabel sesuai (dk = n-1) α = tingkat kepercayaan

SD = standar deviasi n = jumlah perlakuan

3.5.9 Validasi Metoda Analisis 3.5.9.1Uji Kecermatan (Accuracy)

Menurut Harmita (2004), kecermatan dinyatakan sebagai persen perolehan kembali (recovery) analit yang ditambahkan. Uji kecermatan (accuracy) dilakukan dengan metode adisi (penambahan baku). Metode adisi (penambahan baku) dapat dilakukan dengan menambahkan sejumlah analit dengan konsentrasi tertentu pada sampel yang diperiksa, lalu dianalisis dengan metode tersebut. Persen perolehan kembali ditentukan dengan menentukan berapa persen analit yang ditambahkan tadi dapat ditemukan.

Kadar analit dalam metode penambahan baku dapat dihitung sebagai berikut:

� �+� =

�1 �2 Keterangan:

C = kadar analit dalam sampel

S = kadar analit yang ditambahkan pada sampel R1= respon yang diberikan sampel

R2 = respon yang diberikan campuran sampel dengan tambahan analit Perhitungan perolehan kembali dapat juga ditetapkan dengan rumus sebagai berikut:


(75)

% Perolehan Kembali =(CF−CA) C∗A

× 100% Keterangan:

CA = konsentrasi sampel sebelum penambahan baku CF = konsentrasi sampel setelah penambahan baku C∗A = konsentrasi analit yang ditambahkan

3.5.9.2 Penentuan Batas Deteksi (Limit of Detection) dan Batas Kuantitasi (Limit of Quantitation)

Batas deteksi merupakan jumlah terkecil analit dalam sampel yang dapat dideteksi yang masih memberikan respon signifikan. Batas deteksi merupakan parameter uji batas. Penentuan batas deteksi ini ditentukan dengan mendeteksi analit dalam sampel (Harmita, 2004).

Batas kuantitasi merupakan parameter pada analisis renik dan diartikan sebagai kuantitasi terkecil analit dalam sampel yang masih dapat memenuhi kriteria cermat dan seksama (Harmita, 2004).

Batas deteksi dan batas kuantitasidapat dihitung dengan rumus sebagai berikut:

Simpangan Baku =�∑(Y−Yi )2 n−2 Batas Deteksi (LOD) =�����3×��

Batas Kuantitasi ((LOQ) =10������� 3.5.9.3Uji Keseksamaan (Presisi)

Menurut Harmita (2004), Keseksamaandiukur sebagai simpangan bakuatau simpangan baku relatif (koefisien variasi). Adapun rumus untuk menghitung simpangan baku relatif adalah:

��� = ��


(76)

Keterangan : �� = Kadar rata-rata sampel SD = Standar Deviasi

RSD = Relative Standard Deviation(koefisien variasi)

3.5.9.4Pengujian Beda Nilai Rata-Rata Antar Sampel

Dalam penelitian biasanya menggunakan dua sampel atau lebih sebagai objek penelitiannya. Sampel-sampel tersebut dibandingkan untuk melihat ada atau tidaknya perbedaan setelah sampel-sampel tersebut diberi perlakuan berbeda. Oleh karena itu dilakukan uji perbedaan nilai rata-rata antar sampel.

Menurut Sudjana (2002), Prinsip pengujian beda nilai rata-rata adalah melihat ada atau tidaknya perbedaan variasi kedua kelompok data dengan menggunakan rumus:

�� =�1 2 �21 Keterangan:

Fo = beda nilai yang dihitung

�2 = standar deviasi sampel 1 (mg/100 g) �2 = standar deviasi sampel 2 (mg/100 g)

Apabila dari hasilnya diperoleh Fo tidak melewati nilai kritis F, maka dilanjutkan uji dengan distribusi t dengan rumus:

t = (X�1−X�2) Sp�1 n⁄ 1+ 1 n⁄ 2

S= �(n1−1)S1 2+ (n

2− 1)S22 n1 + n2− 2 Keterangan:

��1 = kadar rata-rata sampel 1 ��2 = kadar rata-rata sampel 2 Sp = simpangan baku


(77)

�1 = jumlah perlakuan sampel 1 �2 = jumlah perlakuan sampel 2

Jika Fo melewati nilai kritis F maka dilanjutkan uji dengan distribusi t dengan rumus:

t = (X�1−X�2) Sp X S12

n1 � + S22

n2 � Keterangan:

��1 =kadar rata-rata sampel 1 ��2 = kadar rata-rata sampel 2 S1 = standar deviasi sampel 1 S2 = standar deviasi sampel 2 �1 = jumlah perlakuan sampel 1 �2 = jumlah perlakuan sampel 2

Kedua sampel dinyatakan berbeda apabila t yang diperoleh melewati nilai kritis tdan juga sebaliknya.


(78)

BAB IV

HASIL DAN PEMBAHASAN

4.1 Identifikasi Tumbuhan

Identifikasi tumbuhan dilakukan oleh bagian Herbarium Bogoriense Bidang Botani Pusat Penelitian Biologi LIPI Bogor. Hasil identifikasi menunjukkan bahwa tumbuhan yang digunakan adalah daun kari dengan jenis Murraya koenigii (L.) Spreng dari suku Rutaceae.Hasil identifikasi tumbuhan dapat dilihat pada Lampiran 1, halaman 41.

4.2 Analisis Kualitatif

Analisis kualitatif dilakukan sebagai analisis pendahuluan untuk mengidentifikasi mineral besi, magnesium dan tembaga, data analisis dapat dilihat padaTabel 4.1 berikut:

Tabel4.1Hasil AnalisisKualitatif pada Daun Kari

No Mineral Pereaksi Hasil Reaksi Hasil

1 Besi

K4{Fe(CN)6}22N ↓ Biru + NH4SCN 0,1 N

Larutan warna

merah +

2 Magnesium NaOH 2 N + Titan yellow (0,1% b/v).

↓ merah/larutan

merah +

3. Tembaga NH4 OH 1 N ↓ Biru +

Keterangan : + = mengandung mineral

Pada Tabel 4.1 menunjukkan bahwa sampel daun kari mengandung mineral besi, magnesium dan tembaga. Sampel dinyatakan positif mengandung mineral besi karena menghasilkan endapan biru dengan penambahankalium heksasianoferat(II)(K4{Fe(CN6)}2)2Nkemudian dengan penambahanammonium


(79)

tiosianat (NH4SCN) 0,1Nterbentuk larutan berwarna merah, Sampel dinyatakan positif mengandung mineral magnesium karena menghasilkan endapan merah atau larutan merah dengan penambahan NaOH 2N dan titan yellow (0,1% b/v). Sampel dinyatakan positif mengandung mineral tembaga karena dengan penambahan ammonium hidroksida (NH4OH) 1N terbentuk endapan warna biru (Svehla, 1979).

4.3 Analisis Kuantitatif

4.3.1 Kurva Kalibrasi Besi, Magnesium dan Tembaga

Kurva kalibrasi besi, magnesium dan tembaga diperoleh dengan cara mengukur absorbansi dari larutan baku besi, magnesium dan tembagasecara berurutan pada panjang gelombang 248,3 nm; 285,2 nm dan 324 nm. Dari pengukuran kurva kalibrasi masing-masing diperoleh persamaan regresi yaituY=0,021411 X + 0,0022untukbesi; Y=0,56345X + 0,0025untukmagnesiumdan Y= 0,016649X – 0,00124untuktembaga.Kurva kalibrasi larutan baku besi, magnesium dan tembagadapat dilihat pada Gambar 4.1.

a. Kurva Kalibrasi Besi

Konsentrasi (µg/ml) 0,00

0,05 0,10 0,15 0,20 0,25

0 2 4 6 8 10

0,9998 1-Fe 248,3


(80)

b. Kurva Kalibrasi Magnesium

Konsentrasi (µg/ml)

c. Kurva Kalibrasi Tembaga

Konsentrasi (µg/ml)

Gambar 4.1 Kurva Kalibrasi Secara Spektrofotometri Serapan Atom

Berdasarkankurva kalibrasi pada Gambar 4.1, diperolehnilai koefisienkorelasi (r) masing-masing dari kurva kalibrasi yaitu besisebesar 0,9998; magnesium sebesar 0,9998 dan tembaga sebesar 0,9998. Hal ini menunjukkan adanya hubungan yang linear antara absorbansi (y) dengan konsentrasi (x). Karena semua kurva kalibrasi mineral memenuhi nilai r ≥ 0,997 (Ermer dan McB. Miller, 2005).

0 0,1 0,2 0,3 0,4 0,5 0,6

0 0,2 0,4 0,6 0,8 1

0,9998 1-Mg 285,2

ABS

0 0,02 0,04 0,06 0,08 0,1

0 1 2 3 4 5

0,9998 1-Cu 324,8


(81)

4.3.2 Penetapan Kadar Mineral Besi, Magnesium dan Tembaga pada Sampel

Sampel yang digunakan pada pengujian kadar mineral besi, magnesium dan tembagaadalah daun kari yang terdiri dari daun kari segar dan daun kari rebus.Sampel daun kari dapat dilihat pada Lampiran 2, halaman 42.

Penetapan kadar mineral besi, magnesium dan tembagadilakukan dengan metode spektrofotometri serapan atom. Sumber nyala yang digunakan adalah Udara-Asetilen (UA) dengan suhu nyala 2200°C yang dapat mengatomisasi hampir semua elemen.

Konsentrasi mineralbesi, magnesium dan tembaga pada sampel ditentukan berdasarkan persamaan garis regresi pada kurva kalibrasimasing-masing mineral tersebut. Data hasil penetapan kadar besi, magnesium dan tembaga pada sampelsecara kuantitatif ini dapat dilihat pada Lampiran 8, halaman 53 dan contoh perhitungan dapat dilihat pada Lampiran 9, halaman 55.

Analisis dilanjutkan dengan perhitungan statistik. Data perhitunganstatistik kadar mineral dapat dilihat pada Lampiran 10-12, halaman 59-72. Data hasil penetapan kadar mineral besi, magnesium dan tembaga pada sampel dapat dilihat pada Tabel 4.2.

Tabel4.2 Hasil Penetapan Kadar Mineral Besi, Magnesium dan Tembaga pada Sampel Daun Kari Segar (DKS) dan Daun Kari Rebus (DKR).

Mineral

Kadar Mineral (mg/100g)

Penurunan Kadar Mineral

(%)

DKS DKR

Besi 3,1128± 0,01082 2,9411± 0,0038 5,7402 Magnesium 64,4501± 0,3348 59,6106 ± 0,1922 7,5662 Tembaga 0,6352± 0,0014 0,5668± 0,0022 10,5188 Keterangan :


(1)

3.5.5.2 Besi ... 19

3.5.5.3 Tembaga ... 20

3.5.6 AnalisisSecara Kuantitatif ... 20

3.5.6.1 Pembuatan Kurva Kalibrasi Magnesium .... 20

3.5.6.2 Pembuatan Kurva Kalibrasi Besi ... 20

3.5.6.3 Pembuatan Kurva Kalibrasi Tembaga ... 21

3.5.6.4 Penetapan Kadar Magnesium ... 21

3.5.6.5 Penetapan Kadar Besi ... 22

3.5.6.6 Penetapan Kadar Tembaga ... 22

3.5.7 Perhitungan kadar Besi, Magnesium dan Tembaga dalam sampel ... 22

3.5.8 Analisis Data Secara Statistik ... 23

3.5.9 Validasi Metoda Analisis ... 24

3.5.9.1 Uji Kecermatan (Accuracy) ... 24

3.5.9.2 Penentuan Batas Deteksi (LOD) dan Batas Kuantitasi (LOQ) ... 25

3.5.9.3 Uji Keseksamaan (Presisi) ... 25

3.5.9.4 Pengujian Beda Nilai Rata-Rata Antar Sampel ... 26

BAB IV HASIL DAN PEMBAHASAN ... 28

4.1 Identifikasi Tumbuhan ... 28

4.2 Analisis Kualitatif ... 28


(2)

4.3.1 Kurva Kalibrasi Besi, Magnesium dan Tembaga . 29 4.3.2 Penetapan Kadar Mineral Besi, Magnesium dan

Tembaga padaSampel ... ... 31

4.3.3 Uji Kecermatan (Accuracy) ... ... 33

4.3.4 Uji Keseksamaan (Presisi) ... 34

4.3.5 Batas Deteksi (LOD) dan Batas Kuantitasi (LOQ) ... 35

4.3.6 Pengujian Beda Nilai Rata-rata Kadar Besi, Magnesium dan Tembaga pada Sampel Daun Kari Segar dan Daun Kari Rebus ... 36

BAB V KESIMPULAN DAN SARAN ... 37

5.1 Kesimpulan ... 37

5.2 Saran ... 37

DAFTAR PUSTAKA ... 38

LAMPIRAN ... 41


(3)

Tabel Halaman 2.1 Hasil Analisis Kualitatif pada Daun Kari ... 7 4.1 Hasil Analisis Kualitatif pada Daun Kari ... 28 4.2 Hasil Penetapan Kadar Mineral Besi, Magnesium dan

Tembaga pada Daun Kari Segar (DKS) dan Daun

Kari Rebus (DKR) ... 31 4.3 Persen Perolehan Kembali (Recovery) Mineral Besi,

Magnesium dan Tembaga pada Sampel ... 34 4.4 Nilai Simpangan Baku dan Simpangan Baku Relatif

Mineral Besi, Magnesium dan Tembaga ... 34 4.5 Batas Deteksi (LOD) dan Batas Kuantitasi (LOQ)

Mineral Besi, Magnesium dan Tembaga ... 35

4.6 Hasil Uji Beda Nilai Rata-Rata Kadar Mineral Besi,

MagnesiumDan Tembaga pada Sampel ... 36


(4)

Gambar Halaman 2.1 Sistem Peralatan Spektrofotometri Serapan Atom ... 11 4.1 Kurva Kalibrasi Secara Spektrofotometri Serapan Atom . 29 4.2 Diagram Kadar Mineral Besi, Magnesium dan Tembaga

pada Sampel Daun Kari Segar (DKS) dan Daun Kari Rebus (DKR) ... 32


(5)

Lampiran Halaman

1. Hasil Identifikasi Tumbuhan ... 41

2. Gambar Sampel Daun Kari ... 42

3. Gambar Alat Laboratorium yang Digunakan ... 43

4. Bagan Alir Proses Dekstruksi Kering ... 45

5. Bagan Alir Pembuatan Larutan Sampel ... 47

6. Data Hasil Pengukuran Absorbansi Larutan Standar Magnesium, Besi dan Tembaga ... 48

7. Perhitungan Persamaan Garis Regresi ... 49

8. Hasil Penetapan Kadar Mineral Magnesium, Besi dan Tembaga dalam Sampel ... 53

9. Contoh Perhitungan Kadar MineralMagnesium, Besi dan Tembaga Dalam Sampel ... 55

10. Perhitungan Statistik Kadar MineralBesi dalam Sampel ... 59

11. Perhitungan Statistik Kadar Mineral Magnesium dalam Sampel ... 65

12. Perhitungan Statistik Kadar Mineral Tembaga dalam Sampel ... 72

13. Rekapitulasi Data Kadar Mineral Magnesium, Besi dan Tembaga pada Daun Kari (Murraya koeningii (L.) Spreng) Sebelum Uji-t. ... 79

14. Rekapitulasi Data Kadar Mineral Magnesium, Besi dan Tembaga pada Daun Kari (Murraya koeningii (L.) Spreng) Setelah Uji-t. ... 81

15. Pengujian Beda Nilai Rata-Rata Kadar Mineral BesipadaDaun Kari ... 83

16. Pengujian Beda Nilai Rata-Rata Kadar Mineral MagnesiumpadaDaun Kari ... 85

17. Pengujian Beda Nilai Rata-Rata TembagaKadar Mineral padaDaun Kari ... 87


(6)

18. Perhitungan Batas Deteksi (LOD) dan Batas

Kuantitasi (LOQ) Magnesium, Besi dan Tembaga ... 89 19. Hasil Uji Perolehan Kembali Kadar Mineral

Magnesium, Besi dan Tembaga Setelah

Penambahan Larutan Standar ... 92 20. Perhitungan Uji Perolehan Kembali Kadar Mineral

Magnesium, Besi dan Tembaga dalam Sampel ... 94 21. Perhitungan Simpangan Baku Relatif (RSD)

Magnesium, Besi dan Tembaga dalam Sampel ... 97 22. Tabel Distribusi t ... 100 23. Tabel Distribusi F ... 101