Third−Party Printer Spooling Systems
10.4.3 Third−Party Printer Spooling Systems
Generally, UNIX provides a decent printer spooling subsystem independent of the specific flavor of the given system. It works well, it is flexible enough, and it is fully supported and well documented. However, in administering it, you will soon see occasional strange printing−related behaviors, unexpected problems with printers, hangs of the printing daemon, and difficulties in maintaining printing queues. During production hours, fixing these problems can be quite painful. These problems left a market open for third parties to develop better printer spooling software, and several solutions came into being, including third−party software for example, EasySpooler by the Seay Systems, Inc. and UNIX vendor−specific optional software like HP−UX JetAdmin software. 248 From the user standpoint, the use of the printing subsystem must be completely transparent; users should not be aware of underlying printing software, they simply need to be able to print. From the administration standpoint, however, it is crucial to have a reliable, stable, and easy to maintain printing subsystem. Though there are no universal formulas to make any specific decision in creating such a subsystem, it seems that the generic UNIX printing subsystem is quite sufficient for a print client, while under some circumstances, it is worth considering third−party printer spooling software for a print server. In any case, the final decision is up to the system administrator or the administration team responsible for the actual system. 249Chapter 11: Terminals
11.1 Terminal Characteristics
Terminals have been common devices in the communication between users and UNIX systems for a very long time. The modus vivendi for each UNIX system is to provide services to users, so from the very early days of its development, UNIX has paid full attention to terminals as vehicles for users to log into the system. Evidence of this attention can be seen in many UNIX administration issues, primarily by the fact that the system guarantees an immediate respawning of the eventually killed getty process which controls each connected terminal. A terminal connection is too valuable for UNIX to allow it to be lost; a connected terminal without an attached getty process cannot function properly, so the getty process can never die. We will discuss this topic and other terminal−related issues in this Chapter. While terminals were, in the past, the only way for the system to communicate with users, today they are used only sporadically, primarily for the system console. All major communication with users is now performed through the network. Does this mean that terminals are obsolete? Well, this statement is partially true for terminal units themselves; however, the UNIX concept of communicating with users via terminals remains. The appropriate adaptation was needed: pseudo−terminals, logical terminals that behave like real terminals without having a corresponding physical unit, replace the old terminals. We will also address pseudo−terminals in this Chapter. Terminals are connected with the computer over serial lines and are accessed, like all other devices in UNIX, by the corresponding special device files. Modems are treated in almost the same way as terminals. As with many other issues, UNIX manages terminals in two major ways; again we will address two platforms: BSD and System V or ATT. The two approaches are quite different; they rely on different configuration files, they are based on different terminal capability databases, and sometimes they use different administrative commands. On the other hand, they also overlap in many aspects, and through their development, some of the administrative commands have become common for both platforms.11.1.1 BSD Terminal Subsystem
Although most of the UNIX flavors that support BSD terminal subsystem are old−fashioned platforms, sometimes even obsolete ones or on their way to becoming obsolete, we will start with the BSD terminal subsystem. Obsolescence is generally true for terminals as inputoutput devices, with the exception of the console. In any case, it is difficult to discuss this topic without going back to the earlier days of UNIX, when terminals were a part of every UNIX system. However, there is no doubt about the educational benefits of discussing the BSD terminal subsystem; it explains the continuity in the UNIX development and makes it easier to understand the System V approach to terminals.11.1.1.1 BSD Terminal Line Initialization
Terminals are connected to a system via terminal lines. To make a system available to users, the terminal lines must be initialized and put into operational mode during the system startup. The terminal line initialization is a regular part of the startup procedure to bring the system into multi−user mode. Originally, on the BSD system, init, the process 1, first spawns a shell during the 250Parts
» Unix Administration. 7485KB Mar 29 2010 05:04:17 AM
» UNIX Operating System UNIX — Introductory Notes
» Berkeley Standard Distribution — BSD UNIX System V or ATT UNIX
» System Administrators Job UNIX System and Network Administration
» Computing Policies UNIX System and Network Administration
» Legal Acts Administration Guidelines
» Code of Ethics Administration Guidelines
» USENIX System Administrators Guild — SAGE
» In This Book UNIX System and Network Administration
» Introduction The Unix Model — Selected Topics
» Access Classes File ProtectionFile Access
» Default File Mode File ProtectionFile Access
» Plain Regular File Socket Named Pipe
» Special File Names Special File Creation
» Process Types Process Attributes
» Process Life Cycles Processes
» System V ATT Flavored ps Command
» Destroying Processes The UNIX kill command will eliminate a process entirely:
» Becoming a Superuser Communicating with Other Users
» The man Command UNIX Online Documentation
» The uptime Command The uptime command displays:
» Personal Documentation UNIX Administration Starters
» Shell Script Execution UNIX Shell Scripts
» Shell Variables UNIX Shell Scripts
» Double Command−Line Scanning
» Introductory Notes System Startup and Shutdown
» The Bootstrap Program System Startup
» The Kernel Execution System Startup
» System States System Startup
» The Outlook of a Startup Procedure
» Initialization Scripts System Startup
» The BSD rc Scripts BSD Initialization Sequence
» BSD−Like Initialization System V Initialization
» An Example Shutdown Procedures
» Introduction to the UNIX Filesystem
» System V Filesystem Directory Organization
» Mounting a Filesystem home, users
» Dismounting a Filesystem home, users
» Automatic Filesystem Mounting Removable Media Management
» BSD Filesystem Configuration File
» Filesystem Types A Few Other Filesystem Issues
» Swap Space — Paging and Swapping
» Loopback Virtual Filesystem A Few Other Filesystem Issues
» Display Filesystem Statistics: The df Command
» Checking Filesystems: The fsck Command
» Introduction UNIX Filesystem Layout
» Disk Partitions Physical Filesystem Layout
» Filesystem Structures Physical Filesystem Layout
» The mkfs Command Filesystem Creation
» File Identification and Allocation
» File Storage vs. File Transfer
» Reserved Free Space Filesystem Performance Issues
» Logical Volume Manager — AIX Flavor
» Logical Volume Manager — Solaris Flavor
» Redundant Array of Inexpensive Disks RAID
» The Volume Snapshot Snapshot
» The Filesystem Snapshot Snapshot
» Virtual UNIX Filesystem Logical Filesystem Layout
» Disk Space Upgrade UNIX Filesystem Layout
» User Database — File etcpasswd
» Initialization Template Files UNIX Login Initialization
» User Login Initialization Files
» Systemwide Login Initialization Files
» Restricted User Accounts Users and Secondary Groups
» Assigning User Passwords Standard UNIX Users and Groups
» Managing Disk Usage by Users
» System V Accounting Accounting
» AIX−Flavored Accounting Accounting
» Physical Security Passwords UNIX Lines of Defense
» File Permissions UNIX Lines of Defense
» Backups Password Encryption UNIX Lines of Defense
» Setting Password Restrictions UNIX Lines of Defense
» The Wheel Group Secure Terminals — Other Approaches
» History of the Root Account Tracking User Activities
» The syslogd Daemon The Concept of System Logging
» The Configuration File etcsyslog.conf
» Linux Logging Enhancements The logger Command
» Testing System Logging System Logging Configuration
» The last Command Limiting the Growth of Log Files
» BSD Printing Subsystem UNIX Printing Subsystem
» The lp, lpstat, and cancel Commands
» The etcprintcap File BSD Printer Configuration and the Printer Capability Database
» Filters BSD Printer Configuration and the Printer Capability Database
» The Printer Database Directory Hierarchy on System V
» Setting a Remote Printer on HP−UX
» BSD and AIX Cross−Printing Solaris and BSD Cross−Printing
» Third−Party Printer Spooling Systems
» The tput Command The tset, tput, and stty Commands
» The stty Command The tset, tput, and stty Commands
» The tar Command Tape−Related Commands
» The cpio Command Tape−Related Commands
» The dd Command Tape−Related Commands
» The mt Command Magnetic Tape Devices and Special Device Files
» The SVR3 and SVR4 backup Commands
» The fbackup Command Backup and Dump Commands
» The dumpufsdump Command Backup and Dump Commands
» Interactive Restore The restore Commands
» The frecover Command Restoring Files from a Backup
» Tape Control UNIX Backup and Restore
» The NTP Daemon Network Time Distribution
» The crontab Files Network Time Distribution
» The crontab Command Network Time Distribution
» Linux Approach Network Time Distribution
» Programs Scheduled for a Specific Time
» UNIX and Networking Network Fundamentals
» TCPIP and the Internet ISO OSI Reference Model
» TCPIP Protocol Architecture Computer Networks
» Internet Protocol IP Internet Layer and IP Protocol
» Network Access Layer Transport Layer and TCP and UDP Protocols
» Application Layer TCPIP Layers and Protocols
» IP Address Classes Data Delivery
» Dynamic Routing Internet Routing
» Protocols, Ports, and Sockets
» UNIX Database Files Multiplexing
» The arp Command Address Resolution ARP
» The portmapper Daemon The etcrpc File
» The ifconfig Command Configuring the Network Interface
» The netstat Command Configuring the Network Interface
» The inetd Daemon Super Internet Server
» Further Improvements and Development
» Host Names and Addresses Domain Name Service DNS
» The Local Host Table — etchosts
» Handling the NIC Host Table — A Journey into the Past
» Other Resolver Parameters BIND Configuration
» Name Servers UNIX Name Service — BIND
» The Configuration File etcnamed.boot
» The named.local File The named.cache file
» Subdomains and Parenting BIND Version 8.X.X
» The nslookup Interactive Mode
» A Few Examples of nslookup Usage
» Purpose and Concepts Network Information Service NIS
» To Create an NIS Client NIS Domain Name
» The etcnetgroup File DatabasesNIS Maps
» Security Issues NIS Management
» The showmount Command Mounting Remote Filesystems
» An Example The Automount Maps
» The rlogin Command The rcp Command
» The HOME.rhosts File Using UNIX r−Commands — An Example
» SSH Configuration Secure Shell SSH
» Root Access SSH Installation and User Access Setup
» SSH — Version 2 Secure Shell SSH
» Simple Mail Transport Protocol SMTP
» Rewriting an E−mail Address Pattern Matching
» Address Transformation The Parsing of E−mail Addresses
» Testing Rewrite Rules The sendmail −bt Command
» The Debugging Level Checking the Mail Queue
» Mail Subcommands The Mail Program and .mailrc File
» POP Transactions Post Office Protocol POP
» Internet Message Access Protocol IMAP
» Finger Common UNIX Network Applications
» The ping Command Host Connectivity
» The traceroute Command Host Connectivity
» The X Administration Philosophy
» Window Managers An Introduction to the X Window System
» xdm Configuration Files The X Display Managers
» Vendor−Specific X Flavors — a Configuration Example
» XDMCP Queries The Xaccess File
» Other Access Control Mechanisms
» Components of the xdm−Based User X Environment
» Other Startup Methods The User X Environment
» A Permanent X11 Installation
» Introduction to Kernel Reconfiguration
» Kernel Configuration Database Kernel Reconfiguration
» The config Command BSD−Like Kernel Configuration Approach
» HP−UX 10.x Kernel Configuration
» UNIX and Modems Introduction to Modems
» Terminal Lines and Modem Control
» C−Kermit Third−Party Communication Software
» UUCP Versions UUCP Chat−Transfer Session
» The UUCP Daemons UUCP Commands, Daemons, and Related Issues
» The UUCP Spool Directories and Files
» Additional Security in BNU UUCP
» Additional Security in Version 2 UUCP
» Intranet vs. Internet Introduction to Intranet
» Intranet Design Approach Introduction to Intranet
» Life Cycle of a Virus Virus Types
» The Viruswall Implementation Viruswalls
» Application Proxies SOCKS Proxies
» Web Services Intranet Front−End Services
» Other External Services Intranet Front−End Services
» Network Infrastructure and Desktops
» Dynamic Host Configuration Protocol DHCP
» UNIX and Not−UNIX Platform Integration
» HP−UX Installation UNIX Installation Procedures
» Linux Installation UNIX Installation Procedures
» Solaris Patch Installation HP−UX Patch Installation
» Solaris and Lost Root Password HP−UX and Lost Root Password
» Solaris Procedure to Create an Alternate Boot Partition
» Solaris Recovery of the Failed Mirrored Boot Disk
Show more