Linux Approach Network Time Distribution
13.2.4 Linux Approach
Among all UNIX flavors, Linux has improved and developed cron facility up the level that surpasses real administrative needs. Linux fully supports cron facilities that exist on the System V platform. That means everything we have already said about cron configuration, as well as cron−related UNIX commands, is also true of the Linux cron facility. However, Linux offers much more. Linux has introduced the file etccrontab which provides another scheduling table for periodic system tasks; in that way Linux has made cron closer to other UNIX configuration topics that do have their configuration files in the etc directory. Additionally Linux has even introduced a separate etccron.d subdirectory for posting of programs for periodic execution; Linux cron is searching for programs in this directory. The implemented syntax for newly introduced scheduled entries corresponds to BSD format. This makes etccrontab work for any user. Remember, the format of an entry in the etccrontab file is: mins hrs day−of−month month weekday username cmd Besides the usual cron entries, Linux cron also understands entries that define the environment for the execution of the specified cron commands. The predefined environment makes cron entries more versatile, with a possibility of executing cron entries in an environment different from the default one. And last but not least, Linux has introduced a number of configurable flavor−specific cron−related commands. The behavior of commands relies on their sophisticated configuration files or, in many cases, on hierarchically organized configuration directories similar to the rc directory structure in the case of the system startupshutdown. Having all that in mind, Linux has built an extremely powerful and flexible cron facility, with the possibility for scheduling periodic tasks in multiple ways. Upon Linux installation, most routine periodic tasks for system maintenance are already scheduled through the etccrontab file and corresponding specific commands. However, it does not demand in any way that an administrator use the etccrontab file for personal needs. For users themselves, a usual System V approach is assumed. 312 For a better understanding of the previous discussion, let us see a few examples. First, to list the crontab file and the cron.d subdirectory: ls −l etc | grep cron drwxr−xr−x 2 root root 1024 Nov 30 17:30 cron.d −rw−r−−r−− 1 root root 385 Jan 16 20:46 crontab • Then to see the contents of the etccrontab file: cat etccrontab SHELL=binbash PATH=sbin:bin:usrsbin:usrbin MAILTO=root HOME= run−parts 01 root run−parts etccron.hourly 02 4 root run−parts etccron.daily 22 4 0 root run−parts etccron.weekly 42 4 1 root run−parts etccron.monthly • The first several entries define the environment for the execution of listed commands. This is Linux specific; other flavors would complain about those lines. The second part consists of run−parts entries, which are also a Linux invention. The format of the entries themselves is known, but the listed command run−parts is new — this command executes all individual programs that live in the referred subdirectories. In this case: ls −l etccron. etccron.daily: total 5 −rwxr−xr−x 1 root root 276 Aug 4 2000 0anacron −rwxr−xr−x 1 root root 51 Aug 15 2000 logrotate −rwxr−xr−x 1 root root 402 Aug 23 15:56 makewhatis.cron −rwxr−xr−x 1 root root 99 Dec 18 17:15 slocate.cron −rwxr−xr−x 1 root root 221 Oct 5 20:41 tmpwatch etccron.hourly: total 0 etccron.monthly: total 1 −rwxr−xr−x 1 root root 278 Aug 4 2000 0anacron etccron.weekly: total 2 −rwxr−xr−x 1 root root 277 Aug 4 2000 0anacron −rwxr−xr−x 1 root root 399 Aug 23 15:56 makewhatis.cron The listed programs will be executed on an hourly, daily, weekly, or monthly basis, depending on the subdirectory where they live. Some programs could be additionally configured through their configuration files, like logrotate and anacron, which makes the cron facility even more powerful, but also more complex. Especially, logrotate has its own configuration file etclogrotate.conf and additional configuration data in the subdirectory etclogrotate.d, as can be seen from the following: ls −l etclogrotate. −rw−r−−r−− 1 root root 542 Aug 15 2000 etclogrotate.conf etclogrotate.d: 313 Similarly, the program anacron has its own configuration table: ls −l etcanacron −rw−r−−r−− 1 root root 370 Aug 4 2000 etcanacrontab Obviously Linux has gone deeper in this segment than other UNIX flavors. Whether such a sophisticated cron mechanism is really necessary is another issue. Cron is a scheduler, and all UNIX flavors support this facility. Linux does it in a more complex way — it is also fair to say, in a more powerful way.13.3 Programs Scheduled for a Specific Time
Parts
» Unix Administration. 7485KB Mar 29 2010 05:04:17 AM
» UNIX Operating System UNIX — Introductory Notes
» Berkeley Standard Distribution — BSD UNIX System V or ATT UNIX
» System Administrators Job UNIX System and Network Administration
» Computing Policies UNIX System and Network Administration
» Legal Acts Administration Guidelines
» Code of Ethics Administration Guidelines
» USENIX System Administrators Guild — SAGE
» In This Book UNIX System and Network Administration
» Introduction The Unix Model — Selected Topics
» Access Classes File ProtectionFile Access
» Default File Mode File ProtectionFile Access
» Plain Regular File Socket Named Pipe
» Special File Names Special File Creation
» Process Types Process Attributes
» Process Life Cycles Processes
» System V ATT Flavored ps Command
» Destroying Processes The UNIX kill command will eliminate a process entirely:
» Becoming a Superuser Communicating with Other Users
» The man Command UNIX Online Documentation
» The uptime Command The uptime command displays:
» Personal Documentation UNIX Administration Starters
» Shell Script Execution UNIX Shell Scripts
» Shell Variables UNIX Shell Scripts
» Double Command−Line Scanning
» Introductory Notes System Startup and Shutdown
» The Bootstrap Program System Startup
» The Kernel Execution System Startup
» System States System Startup
» The Outlook of a Startup Procedure
» Initialization Scripts System Startup
» The BSD rc Scripts BSD Initialization Sequence
» BSD−Like Initialization System V Initialization
» An Example Shutdown Procedures
» Introduction to the UNIX Filesystem
» System V Filesystem Directory Organization
» Mounting a Filesystem home, users
» Dismounting a Filesystem home, users
» Automatic Filesystem Mounting Removable Media Management
» BSD Filesystem Configuration File
» Filesystem Types A Few Other Filesystem Issues
» Swap Space — Paging and Swapping
» Loopback Virtual Filesystem A Few Other Filesystem Issues
» Display Filesystem Statistics: The df Command
» Checking Filesystems: The fsck Command
» Introduction UNIX Filesystem Layout
» Disk Partitions Physical Filesystem Layout
» Filesystem Structures Physical Filesystem Layout
» The mkfs Command Filesystem Creation
» File Identification and Allocation
» File Storage vs. File Transfer
» Reserved Free Space Filesystem Performance Issues
» Logical Volume Manager — AIX Flavor
» Logical Volume Manager — Solaris Flavor
» Redundant Array of Inexpensive Disks RAID
» The Volume Snapshot Snapshot
» The Filesystem Snapshot Snapshot
» Virtual UNIX Filesystem Logical Filesystem Layout
» Disk Space Upgrade UNIX Filesystem Layout
» User Database — File etcpasswd
» Initialization Template Files UNIX Login Initialization
» User Login Initialization Files
» Systemwide Login Initialization Files
» Restricted User Accounts Users and Secondary Groups
» Assigning User Passwords Standard UNIX Users and Groups
» Managing Disk Usage by Users
» System V Accounting Accounting
» AIX−Flavored Accounting Accounting
» Physical Security Passwords UNIX Lines of Defense
» File Permissions UNIX Lines of Defense
» Backups Password Encryption UNIX Lines of Defense
» Setting Password Restrictions UNIX Lines of Defense
» The Wheel Group Secure Terminals — Other Approaches
» History of the Root Account Tracking User Activities
» The syslogd Daemon The Concept of System Logging
» The Configuration File etcsyslog.conf
» Linux Logging Enhancements The logger Command
» Testing System Logging System Logging Configuration
» The last Command Limiting the Growth of Log Files
» BSD Printing Subsystem UNIX Printing Subsystem
» The lp, lpstat, and cancel Commands
» The etcprintcap File BSD Printer Configuration and the Printer Capability Database
» Filters BSD Printer Configuration and the Printer Capability Database
» The Printer Database Directory Hierarchy on System V
» Setting a Remote Printer on HP−UX
» BSD and AIX Cross−Printing Solaris and BSD Cross−Printing
» Third−Party Printer Spooling Systems
» The tput Command The tset, tput, and stty Commands
» The stty Command The tset, tput, and stty Commands
» The tar Command Tape−Related Commands
» The cpio Command Tape−Related Commands
» The dd Command Tape−Related Commands
» The mt Command Magnetic Tape Devices and Special Device Files
» The SVR3 and SVR4 backup Commands
» The fbackup Command Backup and Dump Commands
» The dumpufsdump Command Backup and Dump Commands
» Interactive Restore The restore Commands
» The frecover Command Restoring Files from a Backup
» Tape Control UNIX Backup and Restore
» The NTP Daemon Network Time Distribution
» The crontab Files Network Time Distribution
» The crontab Command Network Time Distribution
» Linux Approach Network Time Distribution
» Programs Scheduled for a Specific Time
» UNIX and Networking Network Fundamentals
» TCPIP and the Internet ISO OSI Reference Model
» TCPIP Protocol Architecture Computer Networks
» Internet Protocol IP Internet Layer and IP Protocol
» Network Access Layer Transport Layer and TCP and UDP Protocols
» Application Layer TCPIP Layers and Protocols
» IP Address Classes Data Delivery
» Dynamic Routing Internet Routing
» Protocols, Ports, and Sockets
» UNIX Database Files Multiplexing
» The arp Command Address Resolution ARP
» The portmapper Daemon The etcrpc File
» The ifconfig Command Configuring the Network Interface
» The netstat Command Configuring the Network Interface
» The inetd Daemon Super Internet Server
» Further Improvements and Development
» Host Names and Addresses Domain Name Service DNS
» The Local Host Table — etchosts
» Handling the NIC Host Table — A Journey into the Past
» Other Resolver Parameters BIND Configuration
» Name Servers UNIX Name Service — BIND
» The Configuration File etcnamed.boot
» The named.local File The named.cache file
» Subdomains and Parenting BIND Version 8.X.X
» The nslookup Interactive Mode
» A Few Examples of nslookup Usage
» Purpose and Concepts Network Information Service NIS
» To Create an NIS Client NIS Domain Name
» The etcnetgroup File DatabasesNIS Maps
» Security Issues NIS Management
» The showmount Command Mounting Remote Filesystems
» An Example The Automount Maps
» The rlogin Command The rcp Command
» The HOME.rhosts File Using UNIX r−Commands — An Example
» SSH Configuration Secure Shell SSH
» Root Access SSH Installation and User Access Setup
» SSH — Version 2 Secure Shell SSH
» Simple Mail Transport Protocol SMTP
» Rewriting an E−mail Address Pattern Matching
» Address Transformation The Parsing of E−mail Addresses
» Testing Rewrite Rules The sendmail −bt Command
» The Debugging Level Checking the Mail Queue
» Mail Subcommands The Mail Program and .mailrc File
» POP Transactions Post Office Protocol POP
» Internet Message Access Protocol IMAP
» Finger Common UNIX Network Applications
» The ping Command Host Connectivity
» The traceroute Command Host Connectivity
» The X Administration Philosophy
» Window Managers An Introduction to the X Window System
» xdm Configuration Files The X Display Managers
» Vendor−Specific X Flavors — a Configuration Example
» XDMCP Queries The Xaccess File
» Other Access Control Mechanisms
» Components of the xdm−Based User X Environment
» Other Startup Methods The User X Environment
» A Permanent X11 Installation
» Introduction to Kernel Reconfiguration
» Kernel Configuration Database Kernel Reconfiguration
» The config Command BSD−Like Kernel Configuration Approach
» HP−UX 10.x Kernel Configuration
» UNIX and Modems Introduction to Modems
» Terminal Lines and Modem Control
» C−Kermit Third−Party Communication Software
» UUCP Versions UUCP Chat−Transfer Session
» The UUCP Daemons UUCP Commands, Daemons, and Related Issues
» The UUCP Spool Directories and Files
» Additional Security in BNU UUCP
» Additional Security in Version 2 UUCP
» Intranet vs. Internet Introduction to Intranet
» Intranet Design Approach Introduction to Intranet
» Life Cycle of a Virus Virus Types
» The Viruswall Implementation Viruswalls
» Application Proxies SOCKS Proxies
» Web Services Intranet Front−End Services
» Other External Services Intranet Front−End Services
» Network Infrastructure and Desktops
» Dynamic Host Configuration Protocol DHCP
» UNIX and Not−UNIX Platform Integration
» HP−UX Installation UNIX Installation Procedures
» Linux Installation UNIX Installation Procedures
» Solaris Patch Installation HP−UX Patch Installation
» Solaris and Lost Root Password HP−UX and Lost Root Password
» Solaris Procedure to Create an Alternate Boot Partition
» Solaris Recovery of the Failed Mirrored Boot Disk
Show more