Display Filesystem Statistics: The df Command
5.6 Managing Filesystem Usage
Once a filesystem is configured and mounted properly, users can start to use files. This is the purpose of the filesystems existence. Using filesystems also means consuming appropriate disk space. Not only users do this; the system also consumes disk space on a regular basis because a number of system log files grow continuously. Incorrect filesystem usage can also corrupt the filesystem itself, making it inaccessible. The worst−case scenario is a complete collapse and crash of the system. Filesystems require a great deal of maintenance during their lifetimes. Primary activities are closely related to disk space usage, and we will mainly focus on that topic. To manage disk space a corresponding tool is needed; UNIX provides the necessary tools in a set of commands that are sufficient for successful management. The main commands in this group are: df To display filesystem statistics du To report on disk usage quot To report disk usage by users The fsck command is used to check filesystems, and will also be discussed.5.6.1 Display Filesystem Statistics: The df Command
The df command produces a report that describes the filesystems, the total capacities, and the amount of free space available, all displayed in 1kB blocks. If a filesystem, or a file, or a directory within a filesystem is specified as an argument, the report refers only to the corresponding filesystem. The two usual flavors of the df command Berkeley and System V generate different reports. A typical BSD report displays: df Filesystem Kbytes used avail capacity Mounted on 133 This output reports the status of existing filesystems, starting with the root disk partition, and then other mounted disk partitions. Each line of the report shows: The filesystem name • The total filesystem capacity in Kbytes • The number of Kbytes in use • The number of Kbytes available free • The percentage of the filesystems storage currently in use • The filesystem mounting point • It sounds impossible, but the displayed percentage can be sometimes larger than 100 the maximum value can reach 111. How can this be? To increase transfer efficiency, 10 of the available filesystem space is sacrificed as fragmented disk space; however, the superuser can use this space if needed. So the full filesystem size is 90 of the total size but 100 for df, and under such circumstances the filesystem can appear to be overfilled. We will return to the 10 reserved disk space later. This example was from SunOS 4.1.3, which supports the BSD form of the df command. Some UNIX flavors, like HP−UX, support both command types; to distinguish between them, the BSD type is renamed bdf. Here is an example from HP−UX 10.20: bdf Filesystem Kbytes used avail used Mounted on devvg00lvol1 91669 58532 23970 71 devvg00lvol7 319125 252427 34785 88 var devvg00lvol6 350997 294527 21370 93 usr devvg00lvol5 99669 23060 66642 26 tmp devvg00lvol4 251285 189044 37112 84 opt The logical volume manager LVM is a standard part of the HP−UX 10.20 and creates the needed special device files for existing logical volumes. To get the report about index nodes this is actually a numerical report about files, use df −i the −i option refers to index nodes: df −i Filesystem iused ifree iused Mounted on devsd0a 1217 13887 8 devsd0g 13130 100150 12 usr devsd0h 10726 374426 3 home rs01−ch:home2gigrsxx−ch rsxx−ch mvaxgr:1DUB1: mvaxgrdisku2 hcprophet:hcprophet hcprophet The System V df command produces a different report. This example is from Solaris 2.6: df devdskc1t0d0s0: 1488210 blocks 290743files 134 This example is from HP−UX 10.20: df opt devvg00lvol4: 74224 blocks 36311 i−nodes tmp devvg00lvol5: 133284 blocks 15592 i−nodes usr devvg00lvol6: 42740 blocks 44762 i−nodes var devvg00lvol7: 69570 blocks 35897 i−nodes devvg00lvol1: 47940 blocks 11893 i−nodes The report includes: The filesystem mount point • The special file name • The number of blocks block=512 bytes • The number of inodes, i.e., files in use • The percentage field, with the used space represented as a percentage of the total space, is missing from the generic System V df report. However, this is the most used, and possibly the most valuable, piece of information generated by the BSD−type command. Some vendors, therefore, provide a special option for this purpose. On Solaris 2.x, the option −k in effect converts the existing df command into the Berkeley style one. df −k Filesystem kbytes used avail capacity Mounted on devdskc1t0d0s0 1280786 536681 740904 43 proc 0 0 0 0 proc fd 0 0 0 0 devfd devdskc1t0d0s3 192241 9 192040 1 altboot swap 565480 4416 561064 1 tmp devmddskd10 4211882 3544631 625133 86 files A frequent run of the df command is strongly recommended. This is an efficient way to prevent the filesystem from being overfilled. Typically, the administrator should be warned when 90 of the filesystem is in use. Please note that fulfilled system−critical filesystems root, usr, var can be fatal for the system. It is a good idea to automate the monitoring of filesystem statistics by periodically running the df command. Combined with an automatically generated warning e−mail, or a paging of the administrator, this can be a very efficient early warning method and could prevent more serious system problems. Some system administrators put the df command in the roots login scripts to be executed as each administrator logs into the system.5.6.2 Report on Disk Usage: The du Command
Parts
» Unix Administration. 7485KB Mar 29 2010 05:04:17 AM
» UNIX Operating System UNIX — Introductory Notes
» Berkeley Standard Distribution — BSD UNIX System V or ATT UNIX
» System Administrators Job UNIX System and Network Administration
» Computing Policies UNIX System and Network Administration
» Legal Acts Administration Guidelines
» Code of Ethics Administration Guidelines
» USENIX System Administrators Guild — SAGE
» In This Book UNIX System and Network Administration
» Introduction The Unix Model — Selected Topics
» Access Classes File ProtectionFile Access
» Default File Mode File ProtectionFile Access
» Plain Regular File Socket Named Pipe
» Special File Names Special File Creation
» Process Types Process Attributes
» Process Life Cycles Processes
» System V ATT Flavored ps Command
» Destroying Processes The UNIX kill command will eliminate a process entirely:
» Becoming a Superuser Communicating with Other Users
» The man Command UNIX Online Documentation
» The uptime Command The uptime command displays:
» Personal Documentation UNIX Administration Starters
» Shell Script Execution UNIX Shell Scripts
» Shell Variables UNIX Shell Scripts
» Double Command−Line Scanning
» Introductory Notes System Startup and Shutdown
» The Bootstrap Program System Startup
» The Kernel Execution System Startup
» System States System Startup
» The Outlook of a Startup Procedure
» Initialization Scripts System Startup
» The BSD rc Scripts BSD Initialization Sequence
» BSD−Like Initialization System V Initialization
» An Example Shutdown Procedures
» Introduction to the UNIX Filesystem
» System V Filesystem Directory Organization
» Mounting a Filesystem home, users
» Dismounting a Filesystem home, users
» Automatic Filesystem Mounting Removable Media Management
» BSD Filesystem Configuration File
» Filesystem Types A Few Other Filesystem Issues
» Swap Space — Paging and Swapping
» Loopback Virtual Filesystem A Few Other Filesystem Issues
» Display Filesystem Statistics: The df Command
» Checking Filesystems: The fsck Command
» Introduction UNIX Filesystem Layout
» Disk Partitions Physical Filesystem Layout
» Filesystem Structures Physical Filesystem Layout
» The mkfs Command Filesystem Creation
» File Identification and Allocation
» File Storage vs. File Transfer
» Reserved Free Space Filesystem Performance Issues
» Logical Volume Manager — AIX Flavor
» Logical Volume Manager — Solaris Flavor
» Redundant Array of Inexpensive Disks RAID
» The Volume Snapshot Snapshot
» The Filesystem Snapshot Snapshot
» Virtual UNIX Filesystem Logical Filesystem Layout
» Disk Space Upgrade UNIX Filesystem Layout
» User Database — File etcpasswd
» Initialization Template Files UNIX Login Initialization
» User Login Initialization Files
» Systemwide Login Initialization Files
» Restricted User Accounts Users and Secondary Groups
» Assigning User Passwords Standard UNIX Users and Groups
» Managing Disk Usage by Users
» System V Accounting Accounting
» AIX−Flavored Accounting Accounting
» Physical Security Passwords UNIX Lines of Defense
» File Permissions UNIX Lines of Defense
» Backups Password Encryption UNIX Lines of Defense
» Setting Password Restrictions UNIX Lines of Defense
» The Wheel Group Secure Terminals — Other Approaches
» History of the Root Account Tracking User Activities
» The syslogd Daemon The Concept of System Logging
» The Configuration File etcsyslog.conf
» Linux Logging Enhancements The logger Command
» Testing System Logging System Logging Configuration
» The last Command Limiting the Growth of Log Files
» BSD Printing Subsystem UNIX Printing Subsystem
» The lp, lpstat, and cancel Commands
» The etcprintcap File BSD Printer Configuration and the Printer Capability Database
» Filters BSD Printer Configuration and the Printer Capability Database
» The Printer Database Directory Hierarchy on System V
» Setting a Remote Printer on HP−UX
» BSD and AIX Cross−Printing Solaris and BSD Cross−Printing
» Third−Party Printer Spooling Systems
» The tput Command The tset, tput, and stty Commands
» The stty Command The tset, tput, and stty Commands
» The tar Command Tape−Related Commands
» The cpio Command Tape−Related Commands
» The dd Command Tape−Related Commands
» The mt Command Magnetic Tape Devices and Special Device Files
» The SVR3 and SVR4 backup Commands
» The fbackup Command Backup and Dump Commands
» The dumpufsdump Command Backup and Dump Commands
» Interactive Restore The restore Commands
» The frecover Command Restoring Files from a Backup
» Tape Control UNIX Backup and Restore
» The NTP Daemon Network Time Distribution
» The crontab Files Network Time Distribution
» The crontab Command Network Time Distribution
» Linux Approach Network Time Distribution
» Programs Scheduled for a Specific Time
» UNIX and Networking Network Fundamentals
» TCPIP and the Internet ISO OSI Reference Model
» TCPIP Protocol Architecture Computer Networks
» Internet Protocol IP Internet Layer and IP Protocol
» Network Access Layer Transport Layer and TCP and UDP Protocols
» Application Layer TCPIP Layers and Protocols
» IP Address Classes Data Delivery
» Dynamic Routing Internet Routing
» Protocols, Ports, and Sockets
» UNIX Database Files Multiplexing
» The arp Command Address Resolution ARP
» The portmapper Daemon The etcrpc File
» The ifconfig Command Configuring the Network Interface
» The netstat Command Configuring the Network Interface
» The inetd Daemon Super Internet Server
» Further Improvements and Development
» Host Names and Addresses Domain Name Service DNS
» The Local Host Table — etchosts
» Handling the NIC Host Table — A Journey into the Past
» Other Resolver Parameters BIND Configuration
» Name Servers UNIX Name Service — BIND
» The Configuration File etcnamed.boot
» The named.local File The named.cache file
» Subdomains and Parenting BIND Version 8.X.X
» The nslookup Interactive Mode
» A Few Examples of nslookup Usage
» Purpose and Concepts Network Information Service NIS
» To Create an NIS Client NIS Domain Name
» The etcnetgroup File DatabasesNIS Maps
» Security Issues NIS Management
» The showmount Command Mounting Remote Filesystems
» An Example The Automount Maps
» The rlogin Command The rcp Command
» The HOME.rhosts File Using UNIX r−Commands — An Example
» SSH Configuration Secure Shell SSH
» Root Access SSH Installation and User Access Setup
» SSH — Version 2 Secure Shell SSH
» Simple Mail Transport Protocol SMTP
» Rewriting an E−mail Address Pattern Matching
» Address Transformation The Parsing of E−mail Addresses
» Testing Rewrite Rules The sendmail −bt Command
» The Debugging Level Checking the Mail Queue
» Mail Subcommands The Mail Program and .mailrc File
» POP Transactions Post Office Protocol POP
» Internet Message Access Protocol IMAP
» Finger Common UNIX Network Applications
» The ping Command Host Connectivity
» The traceroute Command Host Connectivity
» The X Administration Philosophy
» Window Managers An Introduction to the X Window System
» xdm Configuration Files The X Display Managers
» Vendor−Specific X Flavors — a Configuration Example
» XDMCP Queries The Xaccess File
» Other Access Control Mechanisms
» Components of the xdm−Based User X Environment
» Other Startup Methods The User X Environment
» A Permanent X11 Installation
» Introduction to Kernel Reconfiguration
» Kernel Configuration Database Kernel Reconfiguration
» The config Command BSD−Like Kernel Configuration Approach
» HP−UX 10.x Kernel Configuration
» UNIX and Modems Introduction to Modems
» Terminal Lines and Modem Control
» C−Kermit Third−Party Communication Software
» UUCP Versions UUCP Chat−Transfer Session
» The UUCP Daemons UUCP Commands, Daemons, and Related Issues
» The UUCP Spool Directories and Files
» Additional Security in BNU UUCP
» Additional Security in Version 2 UUCP
» Intranet vs. Internet Introduction to Intranet
» Intranet Design Approach Introduction to Intranet
» Life Cycle of a Virus Virus Types
» The Viruswall Implementation Viruswalls
» Application Proxies SOCKS Proxies
» Web Services Intranet Front−End Services
» Other External Services Intranet Front−End Services
» Network Infrastructure and Desktops
» Dynamic Host Configuration Protocol DHCP
» UNIX and Not−UNIX Platform Integration
» HP−UX Installation UNIX Installation Procedures
» Linux Installation UNIX Installation Procedures
» Solaris Patch Installation HP−UX Patch Installation
» Solaris and Lost Root Password HP−UX and Lost Root Password
» Solaris Procedure to Create an Alternate Boot Partition
» Solaris Recovery of the Failed Mirrored Boot Disk
Show more