Introduction UNIX Filesystem Layout
Chapter 6: UNIX Filesystem Layout
6.1 Introduction
In Chapter 5 we discussed the UNIX filesystem primarily from the user standpoint. UNIX users create, read, write, and purge files. And this is correct — UNIX filesystems exist to make the files accessible to users. But there is a lot of work behind the scenes to fulfill this logical requirement. This part is done by the UNIX system itself, and it is mostly hidden from the users. But UNIX administrators must be aware of this fact and should understand this process. Everybody knows that files reside on disk. They are saved somewhere, and when we need them, we get them. But how it works is more mysterious. We use the term filesystem layout to explain how the files are organized within the available disk space. UNIX files cannot exist out of the UNIX filesystems. UNIX filesystem is the vehicle to organize storage resources in a usable way. The filesystem merges files in a hierarchical way and enables their physical storage, as well as access to the stored files when needed. This is always true, independent of the filesystem type and organization. The filesystem layout is the main topic discussed in this chapter. A thorough understanding of filesystem layout is extremely important for successful filesystem management. Once this important topic is understood, many other UNIX issues will become automatically clear. Filesystem management is crucial for overall UNIX administration. This cannot be overstated. Just remember what we said earlier: on UNIX everything is a file or file−like. Files are in the center of UNIX. Consequently managing the files is the core of UNIX administration. Disk space can vary in size, type, characteristics, and even location a remote disk space can be used, just as the local one, and UNIX must respond to all possible situations. The total disk space is usually partitioned into smaller storage entities convenient for more flexible use, and a separate UNIX filesystem is created in each storage entity. To make the created filesystem visible to users, an additional step is required: it must be merged with other filesystems in an overall UNIX directory hierarchy, which we will address as an overall UNIX filesystem. Strictly speaking the overall UNIX filesystem is not a filesystem per se, rather this is a set of merged filesystems ready for use. UNIX filesystems are organized on two levels: physical and logical. Physical layout directly reflects the filesystem organization within a storage entity. It takes care of files parameters and maps them into corresponding hardware parameters of the storage entity. However, the UNIX filesystem can be organized and managed in a more sophisticated way within a virtual logical storage space that is built around physical entities. A new level of abstraction was introduced to make filesystem organization more flexible and powerful. Logical layouts of a storage space and its physical counterpart do not have to be necessarily the same. A logical storage can be spread over a part of a disk, over a whole disk, or as in todays modern UNIX flavors, over several disks. Nearly any combination of multiple partitions of multiple disks can be combined performance−wise in an extremely powerful way. Of course, a precise mapping of the logical storage to the physical storage counterpart is crucial. Once this bidirectional relationship is firmly established, UNIX can manage files on a logical level only. Logical storage entities are known as logical volumes, and the corresponding system software for their management is known as logical volume manager LVM. Logical volumes appeared at the moment when the disk technology reached the point where disk size, speed, and price stopped to be issues. LVM is a relatively new UNIX topic; for most of the UNIX flavors it is still an optional piece 141 We will use the general term data to refer to the system and user data stored on the disk. User data is the real data kept in files within the filesystem; system data is the data needed to identify and manage the user data. The system data presents a necessary overhead, but from the system standpoint this data is crucial for managing the filesystem. The data block is the smallest data unit. Each UNIX file consumes one or more blocks. If all the files blocks are known, the file itself can be easily managed. An additional step to identify the sequence of blocks that make the file is required. This is exactly why we organize files into a filesystem. We can look to the filesystem as a kind of umbrella that covers files and provides mechanisms for their use; system data keeps information needed for their accurate identification and allocation.6.2 Physical Filesystem Layout
Parts
» Unix Administration. 7485KB Mar 29 2010 05:04:17 AM
» UNIX Operating System UNIX — Introductory Notes
» Berkeley Standard Distribution — BSD UNIX System V or ATT UNIX
» System Administrators Job UNIX System and Network Administration
» Computing Policies UNIX System and Network Administration
» Legal Acts Administration Guidelines
» Code of Ethics Administration Guidelines
» USENIX System Administrators Guild — SAGE
» In This Book UNIX System and Network Administration
» Introduction The Unix Model — Selected Topics
» Access Classes File ProtectionFile Access
» Default File Mode File ProtectionFile Access
» Plain Regular File Socket Named Pipe
» Special File Names Special File Creation
» Process Types Process Attributes
» Process Life Cycles Processes
» System V ATT Flavored ps Command
» Destroying Processes The UNIX kill command will eliminate a process entirely:
» Becoming a Superuser Communicating with Other Users
» The man Command UNIX Online Documentation
» The uptime Command The uptime command displays:
» Personal Documentation UNIX Administration Starters
» Shell Script Execution UNIX Shell Scripts
» Shell Variables UNIX Shell Scripts
» Double Command−Line Scanning
» Introductory Notes System Startup and Shutdown
» The Bootstrap Program System Startup
» The Kernel Execution System Startup
» System States System Startup
» The Outlook of a Startup Procedure
» Initialization Scripts System Startup
» The BSD rc Scripts BSD Initialization Sequence
» BSD−Like Initialization System V Initialization
» An Example Shutdown Procedures
» Introduction to the UNIX Filesystem
» System V Filesystem Directory Organization
» Mounting a Filesystem home, users
» Dismounting a Filesystem home, users
» Automatic Filesystem Mounting Removable Media Management
» BSD Filesystem Configuration File
» Filesystem Types A Few Other Filesystem Issues
» Swap Space — Paging and Swapping
» Loopback Virtual Filesystem A Few Other Filesystem Issues
» Display Filesystem Statistics: The df Command
» Checking Filesystems: The fsck Command
» Introduction UNIX Filesystem Layout
» Disk Partitions Physical Filesystem Layout
» Filesystem Structures Physical Filesystem Layout
» The mkfs Command Filesystem Creation
» File Identification and Allocation
» File Storage vs. File Transfer
» Reserved Free Space Filesystem Performance Issues
» Logical Volume Manager — AIX Flavor
» Logical Volume Manager — Solaris Flavor
» Redundant Array of Inexpensive Disks RAID
» The Volume Snapshot Snapshot
» The Filesystem Snapshot Snapshot
» Virtual UNIX Filesystem Logical Filesystem Layout
» Disk Space Upgrade UNIX Filesystem Layout
» User Database — File etcpasswd
» Initialization Template Files UNIX Login Initialization
» User Login Initialization Files
» Systemwide Login Initialization Files
» Restricted User Accounts Users and Secondary Groups
» Assigning User Passwords Standard UNIX Users and Groups
» Managing Disk Usage by Users
» System V Accounting Accounting
» AIX−Flavored Accounting Accounting
» Physical Security Passwords UNIX Lines of Defense
» File Permissions UNIX Lines of Defense
» Backups Password Encryption UNIX Lines of Defense
» Setting Password Restrictions UNIX Lines of Defense
» The Wheel Group Secure Terminals — Other Approaches
» History of the Root Account Tracking User Activities
» The syslogd Daemon The Concept of System Logging
» The Configuration File etcsyslog.conf
» Linux Logging Enhancements The logger Command
» Testing System Logging System Logging Configuration
» The last Command Limiting the Growth of Log Files
» BSD Printing Subsystem UNIX Printing Subsystem
» The lp, lpstat, and cancel Commands
» The etcprintcap File BSD Printer Configuration and the Printer Capability Database
» Filters BSD Printer Configuration and the Printer Capability Database
» The Printer Database Directory Hierarchy on System V
» Setting a Remote Printer on HP−UX
» BSD and AIX Cross−Printing Solaris and BSD Cross−Printing
» Third−Party Printer Spooling Systems
» The tput Command The tset, tput, and stty Commands
» The stty Command The tset, tput, and stty Commands
» The tar Command Tape−Related Commands
» The cpio Command Tape−Related Commands
» The dd Command Tape−Related Commands
» The mt Command Magnetic Tape Devices and Special Device Files
» The SVR3 and SVR4 backup Commands
» The fbackup Command Backup and Dump Commands
» The dumpufsdump Command Backup and Dump Commands
» Interactive Restore The restore Commands
» The frecover Command Restoring Files from a Backup
» Tape Control UNIX Backup and Restore
» The NTP Daemon Network Time Distribution
» The crontab Files Network Time Distribution
» The crontab Command Network Time Distribution
» Linux Approach Network Time Distribution
» Programs Scheduled for a Specific Time
» UNIX and Networking Network Fundamentals
» TCPIP and the Internet ISO OSI Reference Model
» TCPIP Protocol Architecture Computer Networks
» Internet Protocol IP Internet Layer and IP Protocol
» Network Access Layer Transport Layer and TCP and UDP Protocols
» Application Layer TCPIP Layers and Protocols
» IP Address Classes Data Delivery
» Dynamic Routing Internet Routing
» Protocols, Ports, and Sockets
» UNIX Database Files Multiplexing
» The arp Command Address Resolution ARP
» The portmapper Daemon The etcrpc File
» The ifconfig Command Configuring the Network Interface
» The netstat Command Configuring the Network Interface
» The inetd Daemon Super Internet Server
» Further Improvements and Development
» Host Names and Addresses Domain Name Service DNS
» The Local Host Table — etchosts
» Handling the NIC Host Table — A Journey into the Past
» Other Resolver Parameters BIND Configuration
» Name Servers UNIX Name Service — BIND
» The Configuration File etcnamed.boot
» The named.local File The named.cache file
» Subdomains and Parenting BIND Version 8.X.X
» The nslookup Interactive Mode
» A Few Examples of nslookup Usage
» Purpose and Concepts Network Information Service NIS
» To Create an NIS Client NIS Domain Name
» The etcnetgroup File DatabasesNIS Maps
» Security Issues NIS Management
» The showmount Command Mounting Remote Filesystems
» An Example The Automount Maps
» The rlogin Command The rcp Command
» The HOME.rhosts File Using UNIX r−Commands — An Example
» SSH Configuration Secure Shell SSH
» Root Access SSH Installation and User Access Setup
» SSH — Version 2 Secure Shell SSH
» Simple Mail Transport Protocol SMTP
» Rewriting an E−mail Address Pattern Matching
» Address Transformation The Parsing of E−mail Addresses
» Testing Rewrite Rules The sendmail −bt Command
» The Debugging Level Checking the Mail Queue
» Mail Subcommands The Mail Program and .mailrc File
» POP Transactions Post Office Protocol POP
» Internet Message Access Protocol IMAP
» Finger Common UNIX Network Applications
» The ping Command Host Connectivity
» The traceroute Command Host Connectivity
» The X Administration Philosophy
» Window Managers An Introduction to the X Window System
» xdm Configuration Files The X Display Managers
» Vendor−Specific X Flavors — a Configuration Example
» XDMCP Queries The Xaccess File
» Other Access Control Mechanisms
» Components of the xdm−Based User X Environment
» Other Startup Methods The User X Environment
» A Permanent X11 Installation
» Introduction to Kernel Reconfiguration
» Kernel Configuration Database Kernel Reconfiguration
» The config Command BSD−Like Kernel Configuration Approach
» HP−UX 10.x Kernel Configuration
» UNIX and Modems Introduction to Modems
» Terminal Lines and Modem Control
» C−Kermit Third−Party Communication Software
» UUCP Versions UUCP Chat−Transfer Session
» The UUCP Daemons UUCP Commands, Daemons, and Related Issues
» The UUCP Spool Directories and Files
» Additional Security in BNU UUCP
» Additional Security in Version 2 UUCP
» Intranet vs. Internet Introduction to Intranet
» Intranet Design Approach Introduction to Intranet
» Life Cycle of a Virus Virus Types
» The Viruswall Implementation Viruswalls
» Application Proxies SOCKS Proxies
» Web Services Intranet Front−End Services
» Other External Services Intranet Front−End Services
» Network Infrastructure and Desktops
» Dynamic Host Configuration Protocol DHCP
» UNIX and Not−UNIX Platform Integration
» HP−UX Installation UNIX Installation Procedures
» Linux Installation UNIX Installation Procedures
» Solaris Patch Installation HP−UX Patch Installation
» Solaris and Lost Root Password HP−UX and Lost Root Password
» Solaris Procedure to Create an Alternate Boot Partition
» Solaris Recovery of the Failed Mirrored Boot Disk
Show more