Rewriting an E−mail Address Pattern Matching
20.3 The Parsing of E−mail Addresses
Rewrite rules are the core of the sendmail.cf file. Rulesets are groups of associated rewrite rules that can be referenced by a number, or lately any alphanumeric combination. In the S n command syntax, n is the number that identifies the ruleset. Normally, numbers in the range of 0 to 99 are used, but there are no restrictions on ruleset numbering. Among all rulesets, ruleset 0 is the most important. However, each ruleset contributes to a successful address parsing and helps sendmail accomplish its basic task: to deliver e−mail.20.3.1 Rewriting an E−mail Address
A thorough knowledge of rewrite rules is required for a full understanding of how an address parsing is accomplished; the following text should help with this topic. Each rewrite rule is defined by the R command. The syntax of the R command is: R lhs rhs comment where lhs Left−hand side, specifies the pattern to match the input address against. If the matching occurs, the specified rhs over the input address is performed. rhs Right−hand side, specifies the transformation the rules to transform input address if pattern matching occurs if lhs is true. comment This field contains comments referring to this entry; it is ignored by sendmail, but good comments are very important for understanding what is happening in the line.20.3.2 Pattern Matching
The lhs matches the input address against the pattern, and if a match is found, rewrites the address in a new format using the rules defined in the rhs. A rule may process the same address several times because, after being rewritten, the address is again compared against the pattern. If it still matches, it is rewritten again. This cycle of pattern matching and rewriting continues until the address no longer matches the pattern. Macros, classes, literals, and special metasymbols provide the pattern matching. The macros, classes, and literals provide the values against which the input is compared, while the metasymbols define the rules used in matching the pattern. Some metasymbols used for pattern matching are: Metasymbol Meaning Match zero or more tokens + Match one or more tokens 486 =x Match any token in class x ~x Match any token not in class x x Match all tokens in macro x x Match any token in the NIS map named in macro x x Match any token not in the NIS map named in macro x y Match any token in the NIS hosts.byname map We see that all metasymbols request a match for some number of tokens. What is the token itself? A token is a string of characters in an e−mail address delimited by an operator; and the operators are the characters defined in the macro o in the sendmail.cf file. Operators are also counted as tokens when an e−mail address is parsed. Let us examine an e−mail address and its parsing. sendmail first tokenizes the address; for example: bjlpatsy.myschool.scps.edu = bjl, , patsy, ., myschool, ., scps, ., edu This e−mail address contains nine tokens and they are stored internally in a buffer called workspace. When the lhs of a rule is evaluated, a corresponding pattern is also tokenized, and then those tokens are compared to the tokens in the workspace. If both the workspace and the lhs contain the same tokens, a match is found, and the lhs comparison is true. Assume the pattern −+ in the lhs; after tokenizing it: −+ = −, , + The previous address matches the pattern because: It has exactly one token before the literal, so it matches the requirement of the − metasymbol. • It has an symbol that matches the patterns literal . • It has one or more tokens after the literal, so it matches the requirement of the + metasymbol. • When an address matches a pattern, the corresponding strings from the address that match the metasymbols are assigned to indefinite tokens because they may contain more than one token value. The indefinite tokens are identified numerically according to their relative position in the pattern of the metasymbol that they matched. This means that the indefinite token produced by the match of the first metasymbol is called 1; the match of the second metasymbol is called 2; the third is 3, and so on. The indefinite tokens created by the pattern matching can then be referenced by their new names: 1, 2, 3, etc. From the previous example: 1 = bjl It contains seven tokens. 48720.3.3 Address Transformation
Parts
» Unix Administration. 7485KB Mar 29 2010 05:04:17 AM
» UNIX Operating System UNIX — Introductory Notes
» Berkeley Standard Distribution — BSD UNIX System V or ATT UNIX
» System Administrators Job UNIX System and Network Administration
» Computing Policies UNIX System and Network Administration
» Legal Acts Administration Guidelines
» Code of Ethics Administration Guidelines
» USENIX System Administrators Guild — SAGE
» In This Book UNIX System and Network Administration
» Introduction The Unix Model — Selected Topics
» Access Classes File ProtectionFile Access
» Default File Mode File ProtectionFile Access
» Plain Regular File Socket Named Pipe
» Special File Names Special File Creation
» Process Types Process Attributes
» Process Life Cycles Processes
» System V ATT Flavored ps Command
» Destroying Processes The UNIX kill command will eliminate a process entirely:
» Becoming a Superuser Communicating with Other Users
» The man Command UNIX Online Documentation
» The uptime Command The uptime command displays:
» Personal Documentation UNIX Administration Starters
» Shell Script Execution UNIX Shell Scripts
» Shell Variables UNIX Shell Scripts
» Double Command−Line Scanning
» Introductory Notes System Startup and Shutdown
» The Bootstrap Program System Startup
» The Kernel Execution System Startup
» System States System Startup
» The Outlook of a Startup Procedure
» Initialization Scripts System Startup
» The BSD rc Scripts BSD Initialization Sequence
» BSD−Like Initialization System V Initialization
» An Example Shutdown Procedures
» Introduction to the UNIX Filesystem
» System V Filesystem Directory Organization
» Mounting a Filesystem home, users
» Dismounting a Filesystem home, users
» Automatic Filesystem Mounting Removable Media Management
» BSD Filesystem Configuration File
» Filesystem Types A Few Other Filesystem Issues
» Swap Space — Paging and Swapping
» Loopback Virtual Filesystem A Few Other Filesystem Issues
» Display Filesystem Statistics: The df Command
» Checking Filesystems: The fsck Command
» Introduction UNIX Filesystem Layout
» Disk Partitions Physical Filesystem Layout
» Filesystem Structures Physical Filesystem Layout
» The mkfs Command Filesystem Creation
» File Identification and Allocation
» File Storage vs. File Transfer
» Reserved Free Space Filesystem Performance Issues
» Logical Volume Manager — AIX Flavor
» Logical Volume Manager — Solaris Flavor
» Redundant Array of Inexpensive Disks RAID
» The Volume Snapshot Snapshot
» The Filesystem Snapshot Snapshot
» Virtual UNIX Filesystem Logical Filesystem Layout
» Disk Space Upgrade UNIX Filesystem Layout
» User Database — File etcpasswd
» Initialization Template Files UNIX Login Initialization
» User Login Initialization Files
» Systemwide Login Initialization Files
» Restricted User Accounts Users and Secondary Groups
» Assigning User Passwords Standard UNIX Users and Groups
» Managing Disk Usage by Users
» System V Accounting Accounting
» AIX−Flavored Accounting Accounting
» Physical Security Passwords UNIX Lines of Defense
» File Permissions UNIX Lines of Defense
» Backups Password Encryption UNIX Lines of Defense
» Setting Password Restrictions UNIX Lines of Defense
» The Wheel Group Secure Terminals — Other Approaches
» History of the Root Account Tracking User Activities
» The syslogd Daemon The Concept of System Logging
» The Configuration File etcsyslog.conf
» Linux Logging Enhancements The logger Command
» Testing System Logging System Logging Configuration
» The last Command Limiting the Growth of Log Files
» BSD Printing Subsystem UNIX Printing Subsystem
» The lp, lpstat, and cancel Commands
» The etcprintcap File BSD Printer Configuration and the Printer Capability Database
» Filters BSD Printer Configuration and the Printer Capability Database
» The Printer Database Directory Hierarchy on System V
» Setting a Remote Printer on HP−UX
» BSD and AIX Cross−Printing Solaris and BSD Cross−Printing
» Third−Party Printer Spooling Systems
» The tput Command The tset, tput, and stty Commands
» The stty Command The tset, tput, and stty Commands
» The tar Command Tape−Related Commands
» The cpio Command Tape−Related Commands
» The dd Command Tape−Related Commands
» The mt Command Magnetic Tape Devices and Special Device Files
» The SVR3 and SVR4 backup Commands
» The fbackup Command Backup and Dump Commands
» The dumpufsdump Command Backup and Dump Commands
» Interactive Restore The restore Commands
» The frecover Command Restoring Files from a Backup
» Tape Control UNIX Backup and Restore
» The NTP Daemon Network Time Distribution
» The crontab Files Network Time Distribution
» The crontab Command Network Time Distribution
» Linux Approach Network Time Distribution
» Programs Scheduled for a Specific Time
» UNIX and Networking Network Fundamentals
» TCPIP and the Internet ISO OSI Reference Model
» TCPIP Protocol Architecture Computer Networks
» Internet Protocol IP Internet Layer and IP Protocol
» Network Access Layer Transport Layer and TCP and UDP Protocols
» Application Layer TCPIP Layers and Protocols
» IP Address Classes Data Delivery
» Dynamic Routing Internet Routing
» Protocols, Ports, and Sockets
» UNIX Database Files Multiplexing
» The arp Command Address Resolution ARP
» The portmapper Daemon The etcrpc File
» The ifconfig Command Configuring the Network Interface
» The netstat Command Configuring the Network Interface
» The inetd Daemon Super Internet Server
» Further Improvements and Development
» Host Names and Addresses Domain Name Service DNS
» The Local Host Table — etchosts
» Handling the NIC Host Table — A Journey into the Past
» Other Resolver Parameters BIND Configuration
» Name Servers UNIX Name Service — BIND
» The Configuration File etcnamed.boot
» The named.local File The named.cache file
» Subdomains and Parenting BIND Version 8.X.X
» The nslookup Interactive Mode
» A Few Examples of nslookup Usage
» Purpose and Concepts Network Information Service NIS
» To Create an NIS Client NIS Domain Name
» The etcnetgroup File DatabasesNIS Maps
» Security Issues NIS Management
» The showmount Command Mounting Remote Filesystems
» An Example The Automount Maps
» The rlogin Command The rcp Command
» The HOME.rhosts File Using UNIX r−Commands — An Example
» SSH Configuration Secure Shell SSH
» Root Access SSH Installation and User Access Setup
» SSH — Version 2 Secure Shell SSH
» Simple Mail Transport Protocol SMTP
» Rewriting an E−mail Address Pattern Matching
» Address Transformation The Parsing of E−mail Addresses
» Testing Rewrite Rules The sendmail −bt Command
» The Debugging Level Checking the Mail Queue
» Mail Subcommands The Mail Program and .mailrc File
» POP Transactions Post Office Protocol POP
» Internet Message Access Protocol IMAP
» Finger Common UNIX Network Applications
» The ping Command Host Connectivity
» The traceroute Command Host Connectivity
» The X Administration Philosophy
» Window Managers An Introduction to the X Window System
» xdm Configuration Files The X Display Managers
» Vendor−Specific X Flavors — a Configuration Example
» XDMCP Queries The Xaccess File
» Other Access Control Mechanisms
» Components of the xdm−Based User X Environment
» Other Startup Methods The User X Environment
» A Permanent X11 Installation
» Introduction to Kernel Reconfiguration
» Kernel Configuration Database Kernel Reconfiguration
» The config Command BSD−Like Kernel Configuration Approach
» HP−UX 10.x Kernel Configuration
» UNIX and Modems Introduction to Modems
» Terminal Lines and Modem Control
» C−Kermit Third−Party Communication Software
» UUCP Versions UUCP Chat−Transfer Session
» The UUCP Daemons UUCP Commands, Daemons, and Related Issues
» The UUCP Spool Directories and Files
» Additional Security in BNU UUCP
» Additional Security in Version 2 UUCP
» Intranet vs. Internet Introduction to Intranet
» Intranet Design Approach Introduction to Intranet
» Life Cycle of a Virus Virus Types
» The Viruswall Implementation Viruswalls
» Application Proxies SOCKS Proxies
» Web Services Intranet Front−End Services
» Other External Services Intranet Front−End Services
» Network Infrastructure and Desktops
» Dynamic Host Configuration Protocol DHCP
» UNIX and Not−UNIX Platform Integration
» HP−UX Installation UNIX Installation Procedures
» Linux Installation UNIX Installation Procedures
» Solaris Patch Installation HP−UX Patch Installation
» Solaris and Lost Root Password HP−UX and Lost Root Password
» Solaris Procedure to Create an Alternate Boot Partition
» Solaris Recovery of the Failed Mirrored Boot Disk
Show more