The mt Command Magnetic Tape Devices and Special Device Files
12.2.4 The mt Command
The mt command controls a magnetic tape drive. It can be used to position a tape at a particular place, so it is very useful when multiple filesystemsfiles are archived on a single tape. The command syntax is: mt [ −t tapename] command…[count] Or on some UNIX platforms like Solaris 2.x: mt [ −f tapename ] command…[ count ] If tapename is not specified, the environment variable TAPE is used. If TAPE does not exist, mt 278 mt supports the following internal commands: eof Write count EOF marks at the current position on the tape, weof. fsf Forward space over count EOF marks. The tape is positioned on the first block of the file. fsr Forward space count records. bsf Back space over count EOF marks. The tape is positioned on the beginning−of−tape side of the EOF mark. bsr Back space count records. nbsf Back space count files. The tape is positioned on the first block of the file; this is equivalent to { count +1 } bsf s followed by one fsf. asf Absolute space to count file number; this is equivalent to a rewind followed by a fsf count. For the eom commands, count is ignored. eom Space to the end of recorded media on the tape. This is useful for appending files onto previously written tapes. rewind Rewind the tape. offline Rewind the tape and take the drive unit off−line by unloading the tape, rewoffl. status Print status information about the tape unit. retention Rewind the cartridge tape completely, then wind it forward to the end of the reel and back to beginning−of−tape to smooth out tape tension. erase Erase the entire tape.12.2.5 Magnetic Tape Devices and Special Device Files
All tape−related commands deal with magnetic tape drives via corresponding special device files. The command specifies the device file, which then provides the requested operation with the tape drive. Once the operation is completed, the tape is usually rewound. To properly understand tape device files, a bit of history can be instructive. In the past, only low density and small capacity tapes were available, so it was necessary to use a number of tape volumes to backup a complete system. A multivolume backup also included the rewinding of the tape volumes once the desired transaction was completed. The easiest way to provide this unavoidable rewinding was to delegate this task to the device file; rewinding was performed automatically before the device file was closed. The new technology brought new demands. High density and large capacity tapes enable the archival of many files, directories, andor filesystems on a single tape, so there is no need for a multivolume backup. In fact, today the opposite exists; often, multiple filesystems must be archived on the same medium. The fact that a tape was rewound automatically when the archiving was completed became an obstacle; a new command always started from the beginning of the tape, so everything previously stored was overwritten. That is why modified, nonrewinding device files have been introduced; they provide everything contained in the original device files except for the rewinding at the end, and usually they carry an additional n in their names as a prefix or a suffix. The permanent improvements in tape density were addressed in a similar way — new, modified 279 Let us see what this means in practice. On Solaris 2.x which is System V−like, all tape device files reside in the subdirectory devrmt. ls −C devrmt 0 0bn 0cb 0cn 0hb 0hn 0lb 0ln 0mb 0mn 0u 0ubn 0b 0c 0cbn 0h 0hbn 0l 0lbn 0m 0mbn 0n 0ub 0un This is an example from the SunSparc20 workstation with a single 4mm DDS2 tape drive. Each device file is identified by: devrmt unit number [density][BSD behavior][norewind] where density Is identified by the letters l, m, h, u, and c for low, medium, high, ultra, and compressed, respectively BSD behavior By the letter b norewind By the letter n Tape device files can be identified in a similar way on other systems.12.3 Backing Up a UNIX Filesystem
Parts
» Unix Administration. 7485KB Mar 29 2010 05:04:17 AM
» UNIX Operating System UNIX — Introductory Notes
» Berkeley Standard Distribution — BSD UNIX System V or ATT UNIX
» System Administrators Job UNIX System and Network Administration
» Computing Policies UNIX System and Network Administration
» Legal Acts Administration Guidelines
» Code of Ethics Administration Guidelines
» USENIX System Administrators Guild — SAGE
» In This Book UNIX System and Network Administration
» Introduction The Unix Model — Selected Topics
» Access Classes File ProtectionFile Access
» Default File Mode File ProtectionFile Access
» Plain Regular File Socket Named Pipe
» Special File Names Special File Creation
» Process Types Process Attributes
» Process Life Cycles Processes
» System V ATT Flavored ps Command
» Destroying Processes The UNIX kill command will eliminate a process entirely:
» Becoming a Superuser Communicating with Other Users
» The man Command UNIX Online Documentation
» The uptime Command The uptime command displays:
» Personal Documentation UNIX Administration Starters
» Shell Script Execution UNIX Shell Scripts
» Shell Variables UNIX Shell Scripts
» Double Command−Line Scanning
» Introductory Notes System Startup and Shutdown
» The Bootstrap Program System Startup
» The Kernel Execution System Startup
» System States System Startup
» The Outlook of a Startup Procedure
» Initialization Scripts System Startup
» The BSD rc Scripts BSD Initialization Sequence
» BSD−Like Initialization System V Initialization
» An Example Shutdown Procedures
» Introduction to the UNIX Filesystem
» System V Filesystem Directory Organization
» Mounting a Filesystem home, users
» Dismounting a Filesystem home, users
» Automatic Filesystem Mounting Removable Media Management
» BSD Filesystem Configuration File
» Filesystem Types A Few Other Filesystem Issues
» Swap Space — Paging and Swapping
» Loopback Virtual Filesystem A Few Other Filesystem Issues
» Display Filesystem Statistics: The df Command
» Checking Filesystems: The fsck Command
» Introduction UNIX Filesystem Layout
» Disk Partitions Physical Filesystem Layout
» Filesystem Structures Physical Filesystem Layout
» The mkfs Command Filesystem Creation
» File Identification and Allocation
» File Storage vs. File Transfer
» Reserved Free Space Filesystem Performance Issues
» Logical Volume Manager — AIX Flavor
» Logical Volume Manager — Solaris Flavor
» Redundant Array of Inexpensive Disks RAID
» The Volume Snapshot Snapshot
» The Filesystem Snapshot Snapshot
» Virtual UNIX Filesystem Logical Filesystem Layout
» Disk Space Upgrade UNIX Filesystem Layout
» User Database — File etcpasswd
» Initialization Template Files UNIX Login Initialization
» User Login Initialization Files
» Systemwide Login Initialization Files
» Restricted User Accounts Users and Secondary Groups
» Assigning User Passwords Standard UNIX Users and Groups
» Managing Disk Usage by Users
» System V Accounting Accounting
» AIX−Flavored Accounting Accounting
» Physical Security Passwords UNIX Lines of Defense
» File Permissions UNIX Lines of Defense
» Backups Password Encryption UNIX Lines of Defense
» Setting Password Restrictions UNIX Lines of Defense
» The Wheel Group Secure Terminals — Other Approaches
» History of the Root Account Tracking User Activities
» The syslogd Daemon The Concept of System Logging
» The Configuration File etcsyslog.conf
» Linux Logging Enhancements The logger Command
» Testing System Logging System Logging Configuration
» The last Command Limiting the Growth of Log Files
» BSD Printing Subsystem UNIX Printing Subsystem
» The lp, lpstat, and cancel Commands
» The etcprintcap File BSD Printer Configuration and the Printer Capability Database
» Filters BSD Printer Configuration and the Printer Capability Database
» The Printer Database Directory Hierarchy on System V
» Setting a Remote Printer on HP−UX
» BSD and AIX Cross−Printing Solaris and BSD Cross−Printing
» Third−Party Printer Spooling Systems
» The tput Command The tset, tput, and stty Commands
» The stty Command The tset, tput, and stty Commands
» The tar Command Tape−Related Commands
» The cpio Command Tape−Related Commands
» The dd Command Tape−Related Commands
» The mt Command Magnetic Tape Devices and Special Device Files
» The SVR3 and SVR4 backup Commands
» The fbackup Command Backup and Dump Commands
» The dumpufsdump Command Backup and Dump Commands
» Interactive Restore The restore Commands
» The frecover Command Restoring Files from a Backup
» Tape Control UNIX Backup and Restore
» The NTP Daemon Network Time Distribution
» The crontab Files Network Time Distribution
» The crontab Command Network Time Distribution
» Linux Approach Network Time Distribution
» Programs Scheduled for a Specific Time
» UNIX and Networking Network Fundamentals
» TCPIP and the Internet ISO OSI Reference Model
» TCPIP Protocol Architecture Computer Networks
» Internet Protocol IP Internet Layer and IP Protocol
» Network Access Layer Transport Layer and TCP and UDP Protocols
» Application Layer TCPIP Layers and Protocols
» IP Address Classes Data Delivery
» Dynamic Routing Internet Routing
» Protocols, Ports, and Sockets
» UNIX Database Files Multiplexing
» The arp Command Address Resolution ARP
» The portmapper Daemon The etcrpc File
» The ifconfig Command Configuring the Network Interface
» The netstat Command Configuring the Network Interface
» The inetd Daemon Super Internet Server
» Further Improvements and Development
» Host Names and Addresses Domain Name Service DNS
» The Local Host Table — etchosts
» Handling the NIC Host Table — A Journey into the Past
» Other Resolver Parameters BIND Configuration
» Name Servers UNIX Name Service — BIND
» The Configuration File etcnamed.boot
» The named.local File The named.cache file
» Subdomains and Parenting BIND Version 8.X.X
» The nslookup Interactive Mode
» A Few Examples of nslookup Usage
» Purpose and Concepts Network Information Service NIS
» To Create an NIS Client NIS Domain Name
» The etcnetgroup File DatabasesNIS Maps
» Security Issues NIS Management
» The showmount Command Mounting Remote Filesystems
» An Example The Automount Maps
» The rlogin Command The rcp Command
» The HOME.rhosts File Using UNIX r−Commands — An Example
» SSH Configuration Secure Shell SSH
» Root Access SSH Installation and User Access Setup
» SSH — Version 2 Secure Shell SSH
» Simple Mail Transport Protocol SMTP
» Rewriting an E−mail Address Pattern Matching
» Address Transformation The Parsing of E−mail Addresses
» Testing Rewrite Rules The sendmail −bt Command
» The Debugging Level Checking the Mail Queue
» Mail Subcommands The Mail Program and .mailrc File
» POP Transactions Post Office Protocol POP
» Internet Message Access Protocol IMAP
» Finger Common UNIX Network Applications
» The ping Command Host Connectivity
» The traceroute Command Host Connectivity
» The X Administration Philosophy
» Window Managers An Introduction to the X Window System
» xdm Configuration Files The X Display Managers
» Vendor−Specific X Flavors — a Configuration Example
» XDMCP Queries The Xaccess File
» Other Access Control Mechanisms
» Components of the xdm−Based User X Environment
» Other Startup Methods The User X Environment
» A Permanent X11 Installation
» Introduction to Kernel Reconfiguration
» Kernel Configuration Database Kernel Reconfiguration
» The config Command BSD−Like Kernel Configuration Approach
» HP−UX 10.x Kernel Configuration
» UNIX and Modems Introduction to Modems
» Terminal Lines and Modem Control
» C−Kermit Third−Party Communication Software
» UUCP Versions UUCP Chat−Transfer Session
» The UUCP Daemons UUCP Commands, Daemons, and Related Issues
» The UUCP Spool Directories and Files
» Additional Security in BNU UUCP
» Additional Security in Version 2 UUCP
» Intranet vs. Internet Introduction to Intranet
» Intranet Design Approach Introduction to Intranet
» Life Cycle of a Virus Virus Types
» The Viruswall Implementation Viruswalls
» Application Proxies SOCKS Proxies
» Web Services Intranet Front−End Services
» Other External Services Intranet Front−End Services
» Network Infrastructure and Desktops
» Dynamic Host Configuration Protocol DHCP
» UNIX and Not−UNIX Platform Integration
» HP−UX Installation UNIX Installation Procedures
» Linux Installation UNIX Installation Procedures
» Solaris Patch Installation HP−UX Patch Installation
» Solaris and Lost Root Password HP−UX and Lost Root Password
» Solaris Procedure to Create an Alternate Boot Partition
» Solaris Recovery of the Failed Mirrored Boot Disk
Show more