Discrete time Collision local time of random walks

1 Introduction and main results In this paper, we derive variational representations for the radius of convergence of the generating functions of the collision local time of two independent copies of a symmetric and transient random walk, both starting at the origin and running in discrete or in continuous time, when the average is taken w.r.t. one, respectively, two random walks. These variational representations are subsequently used to establish the existence of an intermediate phase for the long-time behaviour of a class of interacting stochastic systems.

1.1 Collision local time of random walks

1.1.1 Discrete time

Let S = S k ∞ k=0 and S ′ = S ′ k ∞ k=0 be two independent random walks on Z d , d ≥ 1, both starting at the origin, with an irreducible, symmetric and transient transition kernel p ·, ·. Write p n for the n-th convolution power of p, and abbreviate p n x := p n 0, x, x ∈ Z d . Suppose that lim n →∞ log p 2n log n =: −α, α ∈ [1, ∞. 1.1 Write P to denote the joint law of S, S ′ . Let V = V S, S ′ := ∞ X k=1 1 {S k =S ′ k } 1.2 be the collision local time of S, S ′ , which satisfies PV ∞ = 1 by transience, and define z 1 := sup ¦ z ≥ 1: E ” z V | S — ∞ S-a.s. © , 1.3 z 2 := sup ¦ z ≥ 1: E ” z V — ∞ © . 1.4 The lower indices indicate the number of random walks being averaged over. Note that, by the tail triviality of S, the range of z’s for which E[ z V | S ] converges is S-a.s. constant. 1 Let E := Z d , let e E = ∪ n ∈N E n be the set of finite words drawn from E, and let P inv e E N denote the shift-invariant probability measures on e E N , the set of infinite sentences drawn from e E. Define f : e E → [0, ∞ via f x 1 , . . . , x n = p n x 1 + · · · + x n p 2 ⌊n2⌋ [2 ¯ G0 − 1], n ∈ N, x 1 , . . . , x n ∈ E, 1.5 where ¯ G0 = P ∞ n=0 p 2n 0 is the Green function at the origin associated with p 2 ·, ·, which is the transition matrix of S − S ′ , and p 2 ⌊n2⌋ 0 0 for all n ∈ N by the symmetry of p·, ·. The following variational representations hold for z 1 and z 2 . 1 Note that PV = ∞ = 1 for a symmetric and recurrent random walk, in which case trivially z 1 = z 2 = 1. 553 Theorem 1.1. Assume 1.1. Then z 1 = 1 + exp[−r 1 ], z 2 = 1 + exp[−r 2 ] with r 1 ≤ sup Q ∈P inv e E N ¨Z e E π 1 Qd y log f y − I que Q « , 1.6 r 2 = sup Q ∈P inv e E N ¨Z e E π 1 Qd y log f y − I ann Q « , 1.7 where π 1 Q is the projection of Q onto e E, while I que and I ann are the rate functions in the quenched, respectively, annealed large deviation principle that is given in Theorem 2.2, respectively, 2.1 below with see 2.4, 2.7 and 2.13–2.14 E = Z d , νx = px, x ∈ E, ρn = p 2 ⌊n2⌋ 0[2 ¯ G0 − 1], n ∈ N. 1.8 Let P erg,fin e E N = {Q ∈ P inv e E N : Q is shift-ergodic, m Q ∞}, 1.9 where m Q is the average word length under Q, i.e., m Q = R e E π 1 Q y τ y with τ y the length of the word y. Theorem 1.1 can be improved under additional assumptions on the random walk, namely, 2 P x ∈Z d kxk δ px ∞ for some δ 0, 1.10 lim inf n →∞ log[ p n S n p 2 ⌊n2⌋ 0 ] log n ≥ 0 S − a.s., 1.11 inf n ∈N E log[ p n S n p 2 ⌊n2⌋ 0 ] −∞. 1.12 Theorem 1.2. Assume 1.1 and 1.10–1.12. Then equality holds in 1.6, and r 1 = sup Q ∈P erg,fin e E N ¨Z e E π 1 Qd y log f y − I que Q « ∈ R, 1.13 r 2 = sup Q ∈P erg,fin e E N ¨Z e E π 1 Qd y log f y − I ann Q « ∈ R. 1.14 In Section 6 we will exhibit classes of random walks for which 1.10–1.12 hold. We believe that 1.11–1.12 actually hold in great generality. Because I que ≥ I ann , we have r 1 ≤ r 2 , and hence z 2 ≤ z 1 as is also obvious from the definitions of z 1 and z 2 . We prove that strict inequality holds under the stronger assumption that p ·, · is strongly transient, i.e., P ∞ n=1 np n 0 ∞. This excludes α ∈ 1, 2 and part of α = 2 in 1.1. Theorem 1.3. Assume 1.1. If p ·, · is strongly transient, then 1 z 2 z 1 ≤ ∞. 2 By the symmetry of p ·, ·, we have sup x ∈Z d p n x ≤ p 2 ⌊n2⌋ 0 see 3.15, which implies that sup n ∈N sup x ∈Z d log[p n xp 2 ⌊n2⌋ 0] ≤ 0. 554 Since PV = k = 1 − ¯ F ¯ F k , k ∈ N ∪ {0}, with ¯ F := P ∃ k ∈ N: S k = S ′ k , an easy computation gives z 2 = 1 ¯ F . But ¯ F = 1 − [1 ¯ G0] see Spitzer [27], Section 1, and hence z 2 = ¯ G0 [ ¯ G0 − 1]. 1.15 Unlike 1.15, no closed form expression is known for z 1 . By evaluating the function inside the supremum in 1.13 at a well-chosen Q, we obtain the following upper bound. Theorem 1.4. Assume 1.1 and 1.10–1.12. Then z 1 ≤ 1 + X n ∈N e −hp n −1 ∞, 1.16 where hp n = − P x ∈Z d p n x log p n x is the entropy of p n ·. There are symmetric transient random walks for which 1.1 holds with α = 1. Examples are any transient random walk on Z in the domain of attraction of the symmetric stable law of index 1 on R , or any transient random walk on Z 2 in the domain of non-normal attraction of the normal law on R 2 . If in this situation 1.10–1.12 hold, then the two threshold values in 1.3–1.4 agree. Theorem 1.5. If p ·, · satisfies 1.1 with α = 1 and 1.10–1.12, then z 1 = z 2 . 1.1.2 Continuous time Next, we turn the discrete-time random walks S and S ′ into continuous-time random walks e S = S t t ≥0 and e S ′ = e S ′ t t ≥0 by allowing them to make steps at rate 1, keeping the same p ·, ·. Then the collision local time becomes e V := Z ∞ 1 {e S t =e S ′ t } d t. 1.17 For the analogous quantities ez 1 and ez 2 , we have the following. 3 Theorem 1.6. Assume 1.1. If p ·, · is strongly transient, then 1 ez 2 ez 1 ≤ ∞. An easy computation gives log ez 2 = 2G0, 1.18 where G0 = P ∞ n=0 p n 0 is the Green function at the origin associated with p·, ·. There is again no simple expression for ez 1 . Remark 1.7. An upper bound similar to 1.16 holds for e z 1 as well. It is straightforward to show that z 1 ∞ and ez 1 ∞ as soon as p· has finite entropy. 3 For a symmetric and recurrent random walk again trivially e z 1 = ez 2 = 1. 555

1.1.3 Discussion

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52