Proof of Theorem 1.3 getdoc5373. 393KB Jun 04 2011 12:04:23 AM

Moreover, since z 2 = ¯ G0 [ ¯ G0 − 1], as noted in 1.15, we see that z 2 = 1 + exp[− log Z], i.e., r 2 = log Z, and so indeed equality holds in 3.16. The quenched LDP in Theorem 2.2, together with Varadhan’s lemma applied to 3.8, gives z 1 = 1 + exp[ −r 1 ] with r 1 := lim N →∞ 1 N log F 1 N X ≤ sup Q ∈P inv Ý Z d N ¨Z Ý Z d π 1 Qd y log f y − I que Q « X − a.s., 3.20 where I que Q is given by 2.13–2.14. Without further assumptions, we are not able to reverse the inequality in 3.20. This point will be addressed in Section 4 and will require assumptions 1.10–1.12.

3.2 Proof of Theorem 1.3

To compare 3.20 with 3.16, we need the following lemma, the proof of which is deferred. Lemma 3.2. Assume 1.1. Let Q ∗ = q ∗ ⊗N with q ∗ as in 3.19. If m Q ∗ ∞, then I que Q ∗ I ann Q ∗ . With the help of Lemma 3.2 we complete the proof of the existence of the gap as follows. Since log f is bounded from above, the function Q 7→ Z Ý Z d π 1 Qd y log f y − I que Q 3.21 is upper semicontinuous. Therefore, by compactness of the level sets of I que Q, the function in 3.21 achieves its maximum at some Q ∗∗ that satisfies r 1 = Z Ý Z d π 1 Q ∗∗ d y log f y − I que Q ∗∗ ≤ Z Ý Z d π 1 Q ∗∗ d y log f y − I ann Q ∗∗ ≤ r 2 . 3.22 If r 1 = r 2 , then Q ∗∗ = Q ∗ , because the function Q 7→ Z Ý Z d π 1 Qd y log f y − I ann Q 3.23 has Q ∗ as its unique maximiser recall the discussion immediately after Lemma 3.1. But I que Q ∗ I ann Q ∗ by Lemma 3.2, and so we have a contradiction in 3.22, thus arriving at r 1 r 2 . In the remainder of this section we prove Lemma 3.2. Proof. Note that q ∗ Z d n = X x 1 ,...,x n ∈Z d p n x 1 + · · · + x n ¯ G0 − 1 n Y k=1 px k = p 2n ¯ G0 − 1 , n ∈ N, 3.24 and hence, by assumption 1.2, lim n →∞ log q ∗ Z d n log n = −α 3.25 565 and m Q ∗ = ∞ X n=1 nq ∗ Z d n = ∞ X n=1 np 2n ¯ G0 − 1 . 3.26 The latter formula shows that m Q ∗ ∞ if and only if p·, · is strongly transient. We will show that m Q ∗ ∞ =⇒ Q ∗ = q ∗ ⊗N 6∈ R ν , 3.27 the set defined in 2.15. This implies Ψ Q ∗ 6= ν ⊗N recall 2.16, and hence HΨ Q ∗ |ν ⊗N 0, implying the claim because α ∈ 1, ∞ recall 2.14. In order to verify 3.27, we compute the first two marginals of Ψ Q ∗ . Using the symmetry of p ·, ·, we have Ψ Q ∗ a = 1 m Q ∗ ∞ X n=1 n X j=1 X x1,...,xn∈Z d x j =a p n x 1 + · · · + x n ¯ G0 − 1 n Y k=1 px k = pa P ∞ n=1 np 2n −1 a P ∞ n=1 np 2n . 3.28 Hence, Ψ Q ∗ a = pa for all a ∈ Z d with pa 0 if and only if a 7→ ∞ X n=1 n p 2n −1 a is constant on the support of p·. 3.29 There are many p ·, ·’s for which 3.29 fails, and for these 3.27 holds. However, for simple random walk 3.29 does not fail, because a 7→ p 2n −1 a is constant on the 2d neighbours of the origin, and so we have to look at the two-dimensional marginal. Observe that q ∗ x 1 , . . . , x n = q ∗ x σ1 , . . . x σn for any permutation σ of {1, . . . , n}. For a, b ∈ Z d , we have m Q ∗ Ψ Q ∗ a, b = E Q ∗   τ 1 X k=1 1 κY k =a,κY k+1 =b   = ∞ X n=1 ∞ X n ′ =1 X x 1 ,...,x n+n′ q ∗ x 1 , . . . , x n q ∗ x n+1 , . . . , x n+n ′ n X k=1 1 a,b x k , x k+1 = q ∗ x 1 = a q ∗ x 1 = b + ∞ X n=2 n − 1q ∗ {a, b} × Z d n −2 . 3.30 Since q ∗ x 1 = a = pa 2 ¯ G0 − 1 + ∞ X n=2 X x 2 ,...,x n ∈Z d p n a + x 2 + · · · + x n ¯ G0 − 1 pa n Y k=2 px k = pa ¯ G0 − 1 ∞ X n=1 p 2n −1 a 3.31 566 and q ∗ {a, b} × Z d n −2 = 1 n=2 papb ¯ G0 − 1 p 2 a + b + 1 n ≥3 papb ¯ G0 − 1 X x 3 ,...,x n ∈Z d p n a + b + x 3 + · · · + x n n Y k=3 px k = papb ¯ G0 − 1 p 2n −2 a + b, 3.32 we find recall that ¯ G0 − 1 = P ∞ n=1 p 2n Ψ Q ∗ a, b = papb h ∞ P n=1 p 2n ih ∞ P n=1 np 2n i ‚ ∞ X n=1 p 2n −1 a ∞ X n=1 p 2n −1 b + ∞ X n=1 p 2n ∞ X n=2 n − 1p 2n −2 a + b Œ . 3.33 Pick b = −a with pa 0. Then, shifting n to n − 1 in the last sum, we get Ψ Q ∗ a, −a pa 2 − 1 = – ∞ P n=1 p 2n −1 a ™ 2 h ∞ P n=1 p 2n ih ∞ P n=1 np 2n i 0. 3.34 This shows that consecutive letters are not uncorrelated under Ψ Q ∗ , and implies that 3.27 holds as claimed.

3.3 Proof of Theorem 1.6

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52