Proof of Theorem 1.1 getdoc5373. 393KB Jun 04 2011 12:04:23 AM

where I fin Q := HQ | q ⊗N ρ,ν + α − 1 m Q HΨ Q | ν ⊗N . 2.14 The rate function I que is lower semi-continuous, has compact level sets, has a unique zero at Q = q ⊗N ρ,ν , and is affine. Moreover, it is equal to the lower semi-continuous extension of I fin from P inv,fin e E N to P inv e E N . b In particular, if 2.1 holds with α = 1, then for ν ⊗N –a.s. all X , the family PR N ∈ · | X satisfies the LDP with rate function I ann given by 2.7. Note that the quenched rate function 2.14 equals the annealed rate function 2.7 plus an addi- tional term that quantifies the deviation of Ψ Q from the reference law ν ⊗N on the letter sequence. This term is explicit when m Q ∞, but requires a truncation approximation when m Q = ∞. We close this section with the following observation. Let R ν := Q ∈ P inv e E N : w−lim L →∞ 1 L L −1 X k=0 δ θ k κY = ν ⊗N Q − a.s. . 2.15 be the set of Q’s for which the concatenation of words has the same statistical properties as the letter sequence X . Then, for Q ∈ P inv,fin e E N , we have see [6], Equation 1.22 Ψ Q = ν ⊗N ⇐⇒ I que Q = I ann Q ⇐⇒ Q ∈ R ν . 2.16 3 Proof of Theorems 1.1, 1.3 and 1.6

3.1 Proof of Theorem 1.1

The idea is to put the problem into the framework of 2.1–2.5 and then apply Theorem 2.2. To that end, we pick E := Z d , e E = Ý Z d := ∪ n ∈N Z d n , 3.1 and choose νu := pu, u ∈ Z d , ρn := p 2 ⌊n2⌋ 2 ¯ G0 − 1 , n ∈ N, 3.2 where pu = p0, u, u ∈ Z d , p n v − u = p n u, v, u, v ∈ Z d , ¯ G0 = ∞ X n=0 p 2n 0, 3.3 the latter being the Green function of S − S ′ at the origin. Recalling 1.2, and writing z V = z − 1 + 1 V = 1 + V X N =1 z − 1 N V N 3.4 with V N = X j 1 ··· j N ∞ 1 {S j1 =S ′ j1 ,...,S jN =S ′ jN } , 3.5 562 we have E ” z V | S — = 1 + ∞ X N =1 z − 1 N F 1 N X , E ” z V — = 1 + ∞ X N =1 z − 1 N F 2 N , 3.6 with F 1 N X := X j 1 ··· j N ∞ P S j 1 = S ′ j 1 , . . . , S j N = S ′ j N | X , F 2 N := E F 1 N X , 3.7 where X = X k k ∈N denotes the sequence of increments of S. The upper indices 1 and 2 indicate the number of random walks being averaged over. The notation in 3.1–3.2 allows us to rewrite the first formula in 3.7 as F 1 N X = X j 1 ··· j N ∞ N Y i=1 p j i − j i −1   j i − j i −1 X k=1 X j i −1 +k   = X j 1 ··· j N ∞ N Y i=1 ρ j i − j i −1 exp   N X i=1 log   p j i − j i −1 P j i − j i −1 k=1 X j i −1 +k ρ j i − j i −1     . 3.8 Let Y i = X j i −1 +1 , · · · , X j i . Recall the definition of f : Ý Z d → [0, ∞ in 1.5, f x 1 , . . . , x n = p n x 1 + · · · + x n p 2 ⌊n2⌋ [2 ¯ G0 − 1], n ∈ N, x 1 , . . . , x n ∈ Z d . 3.9 Note that, since Ý Z d carries the discrete topology, f is trivially continuous. Let R N ∈ P inv Ý Z d N be the empirical process of words defined in 2.5, and π 1 R N ∈ P Ý Z d the projection of R N onto the first coordinate. Then we have F 1 N X = E  exp N X i=1 log f Y i X   = E  exp ‚ N Z Ý Z d π 1 R N d y log f y Œ X   , 3.10 where P is the joint law of X and τ recall 2.2–2.3. By averaging 3.10 over X we obtain recall the definition of F 2 N from 3.7 F 2 N = E – exp ‚ N Z Ý Z d π 1 R N d y log f y Œ™ . 3.11 Without conditioning on X , the sequence Y i i ∈N is i.i.d. with law recall 2.4 q ⊗N ρ,ν with q ρ,ν x 1 , . . . , x n = p 2 ⌊n2⌋ 2 ¯ G0 − 1 n Y k=1 px k , n ∈ N, x 1 , . . . , x n ∈ Z d . 3.12 Next we note that f in 3.9 is bounded from above. 3.13 563 Indeed, the Fourier representation of p n x, y reads p n x = 1 2π d Z [−π,π d d k e −ik·x bpk n 3.14 with bpk = P x ∈Z d e ik ·x p0, x. Because p ·, · is symmetric, we have bpk ∈ [−1, 1], and it follows that max x ∈Z d p 2n x = p 2n 0, max x ∈Z d p 2n+1 x ≤ p 2n 0, ∀ n ∈ N. 3.15 Consequently, f x 1 , . . . , x n ≤ [2 ¯ G0 − 1] is bounded from above. Therefore, by applying the annealed LDP in Theorem 2.1 to 3.11, in combination with Varadhan’s lemma see Dembo and Zeitouni [14], Lemma 4.3.6, we get z 2 = 1 + exp[−r 2 ] with r 2 := lim N →∞ 1 N log F 2 N ≤ sup Q ∈P inv Ý Z d N ¨Z Ý Z d π 1 Qd y log f y − I ann Q « = sup q ∈P Ý Z d ¨Z Ý Z d qd y log f y − hq | q ρ,ν « 3.16 recall 1.3–1.4 and 3.6. The second equality in 3.16 stems from the fact that, on the set of Q’s with a given marginal π 1 Q = q, the function Q 7→ I ann Q = HQ | q ⊗N ρ,ν has a unique minimiser Q = q ⊗N due to convexity of relative entropy. We will see in a moment that the inequality in 3.16 actually is an equality. In order to carry out the second supremum in 3.16, we use the following. Lemma 3.1. Let Z := P y ∈Ý Z d f yq ρ,ν y. Then Z Ý Z d qd y log f y − hq | q ρ,ν = log Z − hq | q ∗ ∀ q ∈ P Ý Z d , 3.17 where q ∗ y := f yq ρ,ν yZ, y ∈ Ý Z d . Proof. This follows from a straightforward computation. Inserting 3.17 into 3.16, we see that the suprema are uniquely attained at q = q ∗ and Q = Q ∗ = q ∗ ⊗N , and that r 2 ≤ log Z. From 3.9 and 3.12, we have Z = X n ∈N X x 1 ,...,x n ∈Z d p n x 1 + · · · + x n n Y k=1 px k = X n ∈N p 2n 0 = ¯ G0 − 1, 3.18 where we use that P v ∈Z d p m u + vpv = p m+1 u, u ∈ Z d , m ∈ N, and recall that ¯ G0 is the Green function at the origin associated with p 2 ·, ·. Hence q ∗ is given by q ∗ x 1 , . . . , x n = p n x 1 + · · · + x n ¯ G0 − 1 n Y k=1 px k , n ∈ N, x 1 , . . . , x n ∈ Z d . 3.19 564 Moreover, since z 2 = ¯ G0 [ ¯ G0 − 1], as noted in 1.15, we see that z 2 = 1 + exp[− log Z], i.e., r 2 = log Z, and so indeed equality holds in 3.16. The quenched LDP in Theorem 2.2, together with Varadhan’s lemma applied to 3.8, gives z 1 = 1 + exp[ −r 1 ] with r 1 := lim N →∞ 1 N log F 1 N X ≤ sup Q ∈P inv Ý Z d N ¨Z Ý Z d π 1 Qd y log f y − I que Q « X − a.s., 3.20 where I que Q is given by 2.13–2.14. Without further assumptions, we are not able to reverse the inequality in 3.20. This point will be addressed in Section 4 and will require assumptions 1.10–1.12.

3.2 Proof of Theorem 1.3

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52