Proof of Theorem 1.6 getdoc5373. 393KB Jun 04 2011 12:04:23 AM

and q ∗ {a, b} × Z d n −2 = 1 n=2 papb ¯ G0 − 1 p 2 a + b + 1 n ≥3 papb ¯ G0 − 1 X x 3 ,...,x n ∈Z d p n a + b + x 3 + · · · + x n n Y k=3 px k = papb ¯ G0 − 1 p 2n −2 a + b, 3.32 we find recall that ¯ G0 − 1 = P ∞ n=1 p 2n Ψ Q ∗ a, b = papb h ∞ P n=1 p 2n ih ∞ P n=1 np 2n i ‚ ∞ X n=1 p 2n −1 a ∞ X n=1 p 2n −1 b + ∞ X n=1 p 2n ∞ X n=2 n − 1p 2n −2 a + b Œ . 3.33 Pick b = −a with pa 0. Then, shifting n to n − 1 in the last sum, we get Ψ Q ∗ a, −a pa 2 − 1 = – ∞ P n=1 p 2n −1 a ™ 2 h ∞ P n=1 p 2n ih ∞ P n=1 np 2n i 0. 3.34 This shows that consecutive letters are not uncorrelated under Ψ Q ∗ , and implies that 3.27 holds as claimed.

3.3 Proof of Theorem 1.6

The proof follows the line of argument in Section 3.2. The analogues of 3.4–3.7 are z e V = ∞ X N =0 log z N e V N N , 3.35 with e V N N = Z ∞ d t 1 · · · Z ∞ t N −1 d t N 1 {e S t1 =e S ′ t1 ,...,e S tN =e S ′ tN } , 3.36 and E h z e V | e S i = ∞ X N =0 log z N F 1 N e S, E h z e V i = ∞ X N =0 log z N F 2 N , 3.37 with F 1 N e S := Z ∞ d t 1 · · · Z ∞ t N −1 d t N P e S t 1 = e S ′ t 1 , . . . , e S t N = e S ′ t N | e S , F 2 N := E F 1 N e S , 3.38 567 where the conditioning in the first expression in 3.37 is on the full continuous-time path e S = e S t t ≥0 . Our task is to compute er 1 := lim N →∞ 1 N log F 1 N e S e S − a.s., er 2 := lim N →∞ 1 N log F 2 N , 3.39 and show that er 1 er 2 . In order to do so, we write e S t = X ♮ J t , where X ♮ is the discrete-time random walk with transition kernel p ·, · and J t t ≥0 is the rate-1 Poisson process on [0, ∞, and then average over the jump times of J t t ≥0 while keeping the jumps of X ♮ fixed. In this way we reduce the problem to the one for the discrete-time random walk treated in the proof of Theorem 1.6. For the first expression in 3.38 this partial annealing gives an upper bound, while for the second expression it is simply part of the averaging over e S. Define F 1 N X ♮ := Z ∞ d t 1 · · · Z ∞ t N −1 d t N P e S t 1 = e S ′ t 1 , . . . , e S t N = e S ′ t N | X ♮ , F 2 N := E F 1 N X ♮ , 3.40 together with the critical values r ♮ 1 := lim N →∞ 1 N log F 1 N X ♮ X ♮ − a.s., r ♮ 2 := lim N →∞ 1 N log F 2 N . 3.41 Clearly, er 1 ≤ r ♮ 1 and er 2 = r ♮ 2 , 3.42 which can be viewed as a result of “partial annealing”, and so it suffices to show that r ♮ 1 r ♮ 2 . To this end write out P e S t 1 = e S ′ t 1 , . . . , e S t N = e S ′ t N | X ♮ = X ≤ j 1 ≤···≤ j N ∞ N Y i=1 e −t i −t i −1 t i − t i −1 j i − j i −1 j i − j i −1 X ≤ j ′ 1 ≤···≤ j ′ N ∞ N Y i=1 e −t i −t i −1 t i − t i −1 j ′ i − j ′ i −1 j ′ i − j ′ i −1   N Y i=1 p j ′ i − j ′ i −1   j i − j i −1 X k=1 X ♮ j i −1 +k     . 3.43 Integrating over 0 ≤ t 1 ≤ · · · ≤ t N ∞, we obtain F 1 N X ♮ = X ≤ j 1 ≤···≤ j N ∞ X ≤ j ′ 1 ≤···≤ j ′ N ∞ N Y i=1  2 − j i − j i −1 − j ′ i − j ′ i −1 −1 [ j i − j i −1 + j ′ i − j ′ i −1 ] j i − j i −1 j ′ i − j ′ i −1 p j ′ i − j ′ i −1   j i − j i −1 X k=1 X ♮ j i −1 +k     . 3.44 Abbreviating Θ n u = ∞ X m=0 p m u 2 −n−m−1 n + m m , n ∈ N ∪ {0}, u ∈ Z d , 3.45 568 we may rewrite 3.44 as F 1 N X ♮ = X ≤ j 1 ≤···≤ j N ∞ N Y i=1 Θ j i − j i −1   j i − j i −1 X k=1 X ♮ j i −1 +k   . 3.46 This expression is similar in form as the first line of 3.8, except that the order of the j i ’s is not strict. However, defining b F 1 N X ♮ = X j 1 ··· j N ∞ N Y i=1 Θ j i − j i −1   j i − j i −1 X k=1 X ♮ j i −1 +k   , 3.47 we have F 1 N X ♮ = N X M =0 N M [Θ 0] M b F 1 N −M X ♮ , 3.48 with the convention b F 1 X ♮ ≡ 1. Letting r ♮ 1 = lim N →∞ 1 N log b F 1 N X ♮ , X ♮ − a.s., 3.49 and recalling 3.41, we therefore have the relation r ♮ 1 = log h Θ 0 + e br ♮ 1 i , 3.50 and so it suffices to compute br ♮ 1 . Write F 1 N X ♮ = E  exp ‚ N Z Ý Z d π 1 R N d y log f ♮ y Œ X ♮   , 3.51 where f ♮ : Ý Z d → [0, ∞ is defined by f ♮ x 1 , . . . , x n = Θ n x 1 + · · · + x n p 2 ⌊n2⌋ [2 ¯ G0 − 1], n ∈ N, x 1 , . . . , x n ∈ Z d . 3.52 Equations 3.51–3.52 replace 3.8–3.9. We can now repeat the same argument as in 3.16– 3.22, with the sole difference that f in 3.9 is replaced by f ♮ in 3.52, and this, combined with Lemma 3.3 below, yields the gap r ♮ 1 r ♮ 2 . We first check that f ♮ is bounded from above, which is necessary for the application of Varadhan’s lemma. To that end, we insert the Fourier representation 3.14 into 3.45 to obtain Θ n u = 1 2π d Z [−π,π d d k e −ik·u [2 − bpk] −n−1 , u ∈ Z d , 3.53 from which we see that Θ n u ≤ Θ n 0, u ∈ Z d . Consequently, f ♮ n x 1 , · · · , x n ≤ Θ n p 2 ⌊n2⌋ [2 ¯ G0 − 1], n ∈ N, x 1 , . . . , x n ∈ Z d . 3.54 569 Next we note that lim n →∞ 1 n log 2 −a+bn−1 a + bn an ¨ = 0, if a = b, 0, if a 6= b. 3.55 From 1.1, 3.45 and 3.55 it follows that Θ n 0p 2 ⌊n2⌋ 0 ≤ C ∞ for all n ∈ N, so that f ♮ indeed is bounded from above. Note that X ♮ is the discrete-time random walk with transition kernel p ·, ·. The key ingredient behind br ♮ 1 br ♮ 2 is the analogue of Lemma 3.2, this time with Q ∗ = q ∗ ⊗N and q ∗ given by q ∗ x 1 , . . . , x n = Θ n x 1 + · · · + x n 1 2 G0 − Θ n Y k=1 px k , 3.56 replacing 3.19. The proof is deferred to the end. Lemma 3.3. Assume 1.1. Let Q ∗ = q ∗ ⊗N with q ∗ as in 3.56. If m Q ∗ ∞, then I que Q ∗ I ann Q ∗ . This shows that br ♮ 1 br ♮ 2 via the same computation as in 3.21–3.23. The analogue of 3.18 reads Z ♮ = X n ∈N X x 1 ,...,x n ∈Z d Θ n x 1 + · · · + x n n Y k=1 p x k = X n ∈N ∞ X m=0 ¨ X x 1 ,...,x n ∈Z d p m x 1 + · · · + x n n Y k=1 p x k « 2 −n−m−1 n + m m ™ = −Θ 0 + ∞ X n,m=0 p n+m 0 2 −n−m−1 n + m m = −Θ 0 + 1 2 ∞ X k=0 p k 0 = −Θ 0 + 1 2 G0. 3.57 Consequently, log ez 2 = e −er 2 = e −r ♮ 2 = 1 Θ 0 + e br ♮ 2 = 1 Θ 0 + Z ♮ = 2 G0 , 3.58 where we use 3.37, 3.39, 3.42, 3.50 and 3.57. We close by proving Lemma 3.3. Proof. We must adapt the proof in Section 3.2 to the fact that q ∗ has a slightly different form, namely, p n x 1 + · · · + x n is replaced by Θ n x 1 + · · · + x n , which averages transition kernels. The computations are straightforward and are left to the reader. The analogues of 3.24 and 3.26 are q ∗ Z d n = 1 1 2 G0 − Θ ∞ X m=0 p n+m 0 2 −n−m−1 n + m m , m Q ∗ = X n ∈N nq ∗ Z d n = 1 4 1 1 2 G0 − Θ ∞ X k=0 kp k 0, 3.59 570 while the analogues of 3.31–3.32 are q ∗ x 1 = a = pa 1 2 G0 − Θ 1 2 ∞ X k=0 p k a[1 − 2 −k−1 ] = 1 2 pa Ga − Θ a 1 2 G0 − Θ , q ∗ {a, b} × Z d n −2 = papb 1 2 G0 − Θ ∞ X m=0 p n −2+m a + b 2 −n−m−1 n + m m . 3.60 Recalling 3.30, we find Ψ Q ∗ a, −a − pa 2 0, 3.61 implying that Ψ Q ∗ 6= ν ⊗N recall 3.2, and hence HΨ Q ∗ | ν ⊗N 0, implying the claim. 4 Proof of Theorem 1.2 This section uses techniques from [6]. The proof of Theorem 1.2 is based on two approximation lemmas, which are stated in Section 4.1. The proof of these lemmas is given in Sections 4.2–4.3.

4.1 Two approximation lemmas

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52