Approximated harmonic functions for e

For that concerns the rates, we first define, for σ ∈ S N , Λ ± k σ ≡ i ∈ Λ k : σi = ±1 . 4.13 For all x ∈ Γ n N , we then have r N x , x + e ℓ = Q β,N x −1 X σ∈S N [x ] µ β,N [ω]σ X i ∈Λ − ℓ σ p σ, σ i 4.14 = Q β,N x −1 X σ∈S N [x ] µ β,N [ω]σ X i ∈Λ − ℓ σ 1 N e −2β • m σ− 1 N +h i ˜ + . Notice that for all σ ∈ S N x , |Λ − ℓ σ| is a constant just depending on x . Using that h i = ¯h ℓ + e h i , with e h i ∈ [−ǫ, ǫ], we get the bounds r N x , x + e ℓ = | Λ − ℓ x | N e −2β [ m σ+¯h ℓ ] + 1 + Oǫ. 4.15 It follows easily that, for all x ∈ D N ρ, r N x , x + e ℓ r N z ∗ , z ∗ + e ℓ − 1 ≤ cβǫ + nρ, 4.16 for some finite constant c 0. With this in mind, we let erx , x + e ℓ ≡ r N z ∗ , z ∗ + e ℓ ≡ r ℓ and erx + e ℓ , x ≡ r ℓ e Q β,N x e Q β,N x +e ℓ be the modified rates of a dynamics on D N ρ reversible w.r.t. the measure e Q β,N x , and let e L N denote the correspondent generator. For u ∈ G A ,B , we write the corresponding Dirichlet form as e Φ D N u ≡ Q β,N z ∗ X x ∈D N ρ n X ℓ=1 r ℓ e −β Nx −z ∗ ,Az ∗ x −z ∗ ux − ux + e ℓ 2 . 4.17

4.3 Approximated harmonic functions for e

Φ D N We will now describe a function that we will show to be almost harmonic with respect to the Dirichlet form e Φ D N . Define the matrix Bz ∗ ≡ B with elements B ℓ,k ≡ p r ℓ A z ∗ ℓ,k p r k . 4.18 Let ˆ v i , i = 1, . . . , n be the normalized eigenvectors of B, and ˆ γ i be the corresponding eigenvalues. We denote by ˆ γ 1 the unique negative eigenvalue of B, and characterize it in the following lemma. Lemma 4.2. Let z ∗ be a solution of the equation 3.21 and assume in addition that β N N X i=1 € 1 − tanh 2 β z ∗ + h i Š 1. 4.19 1560 Then, z ∗ defined through 3.20 is a saddle point and the unique negative eigenvalue of Bz ∗ is the unique negative solution, ˆ γ 1 ≡ ˆγ 1 N , n, of the equation n X ℓ=1 ρ ℓ 1 |Λ ℓ | P i ∈Λ ℓ 1 − tanhβz ∗ + h i exp −2β ” z ∗ + ¯h ℓ — + 1 |Λℓ| P i ∈Λℓ 1 −tanhβz ∗ +h i exp −2β [ z ∗ +¯h ℓ ] + β |Λℓ| P i ∈Λℓ 1 −tanh 2 βz ∗ +h i − 2γ = 1. 4.20 Moreover, we have that lim n ↑∞ lim N ↑∞ ˆ γ 1 N , n ≡ ¯γ 1 , 4.21 where ¯ γ 1 is the unique negative solution of the equation E h     1 − tanhβz ∗ + h exp −2β [z ∗ + h] + exp −2β[z ∗ +h] + β 1+tanh βz ∗ +h − 2 γ     = 1. 4.22 Proof. The particular form of the matrix B allows to obtain a simple characterization of all eigen- values and eigenvectors. Explicitly, any eigenvector u = u 1 , . . . , u n of B with eigenvalue γ, should satisfy the set of equations − n X ℓ=1 p r ℓ r k u ℓ + r k ˆ λ k − γu k = 0, ∀ k = 1, . . . , n. 4.23 Assume for simplicity that all r k ˆ λ k take distinct values see [6], Lemma 7.2 for the general case. Then the above set of equations has no non-trivial solution for γ = r k ˆ λ k , and we can assume that P n ℓ=1 p r ℓ u ℓ 6= 0. Thus, u k = p r k P n ℓ=1 p r ℓ u ℓ r k ˆ λ k − γ . 4.24 Multiplying by pr k and summing over k, u k is a solution if and only if γ satisfies the equation n X k=1 r k r k ˆ λ k − γ = 1. 4.25 Using 4.15 and noticing that |Λ − k | N = 1 2 ρ k − z ∗ k , we get r k = 1 2 ρ k − z ∗ k exp −2β ” m σ + ¯h k — + 1 + Oǫ. 4.26 Inserting the expressions for z ∗ k ρ k and ˆ λ k given by 3.20 and 3.22 into 4.26 and substituting the result into 4.25, we recover 4.20. Since the left-hand side of 4.25 is monotone decreasing in γ as long as γ ≥ 0, it follows that there can be at most one negative solution of this equation, and such a solution exists if and only if left-hand side is larger than 1 for γ = 0. The claimed convergence property 4.21 follows easily. 1561 We continue our construction defining the vectors v i by v i ℓ ≡ ˆv i ℓ pr ℓ , 4.27 and the vectors ˇ v i by ˇ v i ℓ ≡ ˆv i ℓ p r ℓ = r ℓ v i ℓ . 4.28 We will single out the vectors v ≡ v 1 and ˇ v ≡ ˇv 1 . The important facts about these vectors is that A ˇ v i = ˆ γ i v i , 4.29 and that ˇ v i , v j = δ i j . 4.30 This implies the following non-orthogonal decomposition of the quadratic form A,

y, Ax =

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52