Flow through G getdoc8e1c. 625KB Jun 04 2011 12:04:39 AM

The boundary ∂ G N of G N consists of three disjoint pieces, ∂ G N = ∂ A G N ∪ ∂ B G N ∪ ∂ r G N , where ∂ A G N = x ∈ ∂ G N : x , ˇ v ≤ −νρ and ∂ B G N = x ∈ ∂ G N : x , ˇ v ≥ νρ . 5.7 We choose ν in 5.6 to be so small that there exists K 0, such that F β,N x F β,N 0 + Kρ 2 , 5.8 uniformly over the remaining part of the boundary x ∈ ∂ r G N . Let eg be the approximately harmonic function defined in 4.36 and 4.53. Proceeding along the lines of 4.51 and 4.52 we infer that, Φ N eg 1 + o 1 = X x ∈G N ∪∂ A G N e Q β,N x X ℓ∈I GN x r ℓ egx + e ℓ − egx 2 , 5.9 where I G N x ≡ ℓ : x + e ℓ ∈ G N . For functions, φ, on oriented edges, x , x + e ℓ , of D N , we use the notation φ ℓ x = φx , x + e ℓ , and set F ℓ [φ]x ≡ e Q β,N x r ℓ φ ℓ x , d F [φ]x ≡ n X ℓ=1 F ℓ [φ]x − F ℓ [φ]x − e ℓ . In particular, the left hand side of 4.39 can be written as |dF [∇eg]| e Q β,N x . Let us sum by parts in 5.9. By 5.8 the contribution coming from ∂ r G N is negligible and, conse- quently, we have, up to a factor of order 1 + o 1, X x ∈G N egx dF [∇eg]x + X x ∈∂ A G N X ℓ∈I GN x F ℓ [∇g]x . 5.10 Furthermore, comparison between the claim of Lemma 4.4 and 4.51 recall that ρ 2 = N 2 δ−1 ≪ N −12 shows that the first term above is also negligible with respect to Φ N eg. Hence, Φ N eg 1 + o 1 = X x ∈∂ A G N X ℓ∈I GN x F ℓ [∇eg]x . 5.11

5.3 Flow through G

N The relation 5.11 is the starting point for our construction of a unit flow of the form f ℓ x = c Φ N eg F ℓ [φ]x 5.12 through G N . Above c = 1 + o 1 is a normalization constant. Let us fix 0 ν ≪ ν small enough and define, G N = G N ∩ ¨ x : x − x , ˇ v ˇ v kˇvk 2 ν ρ « . 5.13 Thus, G N is a narrow tube along the principal ˇ v -direction Figure 3.. We want to construct φ in 5.12 such that the following properties holds: 1571 P1: f is confined to G N , it runs from ∂ A G N to ∂ B G N and it is a unit flow. That is, ∀x ∈ G N , d F [φ]x = 0 and X x ∈∂ A G N X ℓ∈I GN x f ℓ [φ]x = 1. 5.14 P2: φ is a small distortion of ∇eg inside G N , φ ℓ x = ∇ ℓ egx 1 + o 1 , 5.15 uniformly in x ∈ G N and ℓ = 1, . . . , n. P3: The flow f is negligible outside G N in the following sense: For some κ 0, max x ∈G N \G N max ℓ f ℓ x ≤ 1 N κ . 5.16 Once we are able to construct f which satisfies P1-P3 above, the associated Markov chain € P f N , X Š obviously satisfies 5.4. The most natural candidate for φ would seem to be ∇eg. However, since eg is not strictly harmonic, this choice does not satisfies Kirchoff’s law, and we would need to correct this by adding a hope- fully small perturbation, which in principle can be constructed recursively. It turns out, however, to be more convenient to use as a starting choice φ ℓ x ≡ v ℓ r β|ˆγ 1 | 2 πN exp € −β N|ˆγ 1 |x , v 2 2 Š , 5.17 which, by 4.43, satisfies φ ℓ x = egx + e ℓ − egx 1 + O ρ , 5.18 uniformly in G N . Notice that, by 5.12, this choice corresponds to the Markov chain with transition probabilities qx , x + e ℓ = ˇ v ℓ P k ˇ v k 1 + o 1 ≡ q ℓ 1 + o 1. 5.19 From 3.16 and the decomposition 4.31 we see that 1 + O ρ e Q N , β F ℓ [φ ] = r ℓ v ℓ r β|ˆγ 1 | 2 πN exp − β N 2 € |ˆγ 1 |x , v 2 + x , Ax Š = ˇ v ℓ r β|ˆγ 1 | 2 πN exp   − β N 2    n X j=2 ˆ γ j x , v j 2       . In particular, there exists a constant χ 1 0 such that F ℓ [φ ]x e Q N , β ≤ exp € −χ 1 N 2 δ Š , 5.20 uniformly in x ∈ G N \ G N and l = 1, . . . , n. 1572 Next, by inspection of the proof of Lemma 4.4, we see that there exists χ 2 , such that, dF [φ ]x ≤ χ 2 ρ 2 F ℓ [φ ]x , 5.21 uniformly in x ∈ G N and ℓ = 1, . . . , n. Notice that we are relying on the strict uniform in n positivity of the entries v ℓ , as stated in Lemma 4.3 Truncation of ∇g, confinement of f and property P1. Let C + be the positive cone spanned by the axis directions e 1 , . . . , e n . Note that the vector ˇ v lies in the interior of C + . Define see Figure 3. G 1 N = int € ∂ B G N − C + Š ∩ G N and G 2 N = € ∂ A G 1 N + C + Š ∩ G N . 5.22 We assume that the constants ν and ν in the definition of G N and, respectively, in the definition of G N are tuned in such a way that G 2 N ∩ ∂ r G N = ;. G N G N G 1 N G 2 N z ∗ ˇ v ∂ A G N ∂ B G N Figure 3: Narrow tube G N and sets G 1 N and G 2 N Let e φ be the restriction of φ to G 1 N , e φ ℓ x ≡ φ ℓ x 1 { x ∈G 1 N }. 5.23 Now we turn to the construction of the full flow. To this end we start by setting the values of φ ℓ on ∂ A G N equal to e φ if ℓ ∈ I G N x and zero otherwise. By 5.11 and the bound 5.20, the second of the relations in 5.14 is satisfied. In order to satisfy Kirchoff’s law inside G N , we write φ as φ = e φ +u with u satisfying the recursion, n X ℓ=1 F ℓ [u]x = n X ℓ=1 F ℓ [u]x − e ℓ − dF [ e φ ]x . 5.24 1573 Since e φ ≡ 0 on G N \ G 1 N , we may trivially take u ≡ 0 on G N \ G 2 N and then solve 5.24 on G 2 N using the latter as an insulated boundary condition on ∂ G 2 N ∩ G N . Interpolation of the flow inside G 2 N . We first solve 5.24 inside G 1 N . By construction, if x ∈ G 1 N then x −e ℓ ∈ G 1 N ∪∂ A G 1 N , for every ℓ = 1, . . . , n. Accordingly, let us slice G 1 N into layers L k as follows: Set L = ∂ A G 1 N , 5.25 and, for k = 0, 1, . . . , L k+1 =    x ∈ G N : x − e ℓ ∈ k [ j=0 L j for all ℓ = 1, . . . , n    . 5.26 Since all entries of v are positive, there exists χ 3 = c 3 n and M ≤ χ 3 ρ, such that G 1 N = M [ j=0 L j . 5.27 Now define recursively, for each x ∈ L k+1 , F ℓ [u]x = q ℓ    n X j=1 F j [u]x − e j − dF [ e φ ]x    , 5.28 where the probability distribution, q 1 , . . . , q n , is defined as in 5.19. Obviously, this produces a solution of 5.24. The particular choice of the constants q ℓ in 5.19 leads to a rather miraculous looking cancelation we will encounter below. Properties P2 and P3. We now prove recursively a bound on u that will imply that Properties P2 and P3 hold. Let c k be constants such that, for all y ∈ L k , F ℓ [u]y ≤ c k ρ 2 F ℓ [∇eg]y. 5.29 Then, for x ∈ L k+1 , we get by construction 5.28 and in view of 5.21 that |F ℓ [u]x | F ℓ [ e φ ]x ≤ q ℓ X j |F j [u]x − e j | F ℓ [ e φ ]x + χ 2 ρ 2 5.30 ≤ ρ 2   c k q ℓ X j F j [ e φ ]x − e j F ℓ [ e φ ]x + χ 2    . By our choice of φ in 5.23, F j [ e φ ]x − e j F ℓ [ e φ ]x = ˇ v j ˇ v ℓ exp β N 2 n X i=2 ˆ γ i € x , v i 2 − x − e j , v i 2 Š 5.31 = ˇ v j ˇ v ℓ exp β N n X i=2 ˆ γ i x , v i e j , v i 1 + O 1N = ˇ v j + 2βe j , ˆ v P n i=2 e j , ˆ v i x , v i ˇ v ℓ € 1 + O ρ 2 Š . 1574 However, for each i = 2, . . . , n, n X j=1 e j , ˆ v e j , ˆ v i = 0. 5.32 Therefore, with the choice q ℓ = ˇ v ℓ P k ˇ v k 1 + o 1, we get q ℓ X j F j [ e φ ]x − e j F ℓ [ e φ ]x = 1 + Oρ 2 , 5.33 uniformly in x ∈ G

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52