Good mesoscopic trajectories getdoc8e1c. 625KB Jun 04 2011 12:04:39 AM

Of course, A j = µ x j β,N B j . It is enough to control the first order approximation,   A j B j σ j   τ j [ℓ] ≈ exp −τ j [ℓ] B j σ j − A j B j σ j ≡ exp € τ j [ℓ]Y j Š . 5.88 The variables Y 1 , . . . , Y n are independent once x is fixed. Thus, in view of our target, 5.65, we need to derive an upper bound of order 1 + O ε for E x ℓ B −1 X ℓ=0 exp    c ε n X j=1 τ j [ℓ] 2 M j + n X j=1 τ j [ℓ]Y j    φ A ,B x ℓ , x ℓ+1 = ℓ B −1 X ℓ=0 exp    c ε n X j=1 τ j [ℓ] 2 M j    n Y 1 µ x j β,N € e τ j [ℓ]Y j Š φ A ,B x ℓ , x ℓ+1 , 5.89 which holds with P f A ,B N -probability of order 1 − Oε.

5.7 Good mesoscopic trajectories

A look at 5.89 reveals what is to be expected from good mesoscopic trajectories. First of all, we may assume that it passes through the tube G N see 5.13 of z ∗ . In particular, x ∈ G N . Next, by our construction of the mesoscopic chain P f A ,B N , and in view of 3.20 and 3.21, the step frequencies, τ j [ℓ]ℓ, are, on average, proportional to ρ j . Therefore, there exists a constant, C 1 , such that, up to exponentially negligible P f A ,B N -probabilities, max j τ j [ℓ B ] M j ≤ C 1 5.90 holds. A bound on microscopic moment-generating functions. We will now use the estimate 5.90 to obtain an upper bound on the product terms in 5.89. Clearly, B j σ j = 1+OεM j , uniformly in j and σ j . Thus, by 5.88, Y j 1 + Oε = 1 M j X i ∈Λ j 1 − e 2e h i 1 {σi=−1} − µ x j β,N σi = −1 ≡ e Y j . 5.91 Now, for any t ≥ 0, ln µ x j β,N e t e Y j ≤ t 2 2M 2 j max s ≤t V x j,s β,N    X i ∈Λ j 1 − e 2e h i 1 {σi=−1}    , 5.92 1584 where V x j,s β,N is the variance with respect to the tilted conditional measure, µ x j,s β,N , defined through µ x j,s β,N f ≡ µ x j β,N f e s e Y j µ x j β,N e s e Y j . 5.93 However, µ x j,s β,N · is again a conditional product Bernoulli measure on S j N , i.e., µ x j,s β,N · = O i ∈Λ j B p i ε,s    · X i ∈Λ j σi = N x j    , 5.94 where p i ε, s = e eh i e eh i + e −eh i + s M j 1−e 2e hi . 5.95 By 5.90 we need to consider only the case s M j ≤ C 1 . Evidently, there exists δ 1 0, such that, δ 1 ≤ min j min s ≤C 1 M j min i ∈Λ j p i ε, s ≤ max j max s ≤C 1 M j max i ∈Λ j p i ε, s ≤ 1 − δ 1 . 5.96 On the other hand, since x ∈ G N , there exists δ 2 0, such that δ 2 ≤ min j N x j M j ≤ max j N x j M j ≤ 1 − δ 2 . 5.97 We use the following general covariance bound for product of Bernoulli measures, which can be derived from local limit results in a straightforward, albeit painful manner. Lemma 5.2. Let δ 1 0 and δ 2 0 be fixed. Then, there exists a constant, C = Cδ 1 , δ 2 ∞, such that, for all conditional Bernoulli product measures on S M , M ∈ N, of the form M O i=1 B p i · M X k=1 ξ k = 2M , 5.98 with p 1 , . . . , p M ∈ δ 1 , 1 − δ 1 and 2M ∈ −M1 − δ 2 , M 1 − δ 2 , and for all 1 ≤ k l ≤ M, it holds that Cov 1 { ξ k =−1 }; 1 { ξ l =−1 } ≤ C M . 5.99 Going back to 5.92 we infer from this that n Y 1 µ x j β,N € e τ j [ℓ]Y j Š ≤ exp    O ε 2 n X j=1 τ j [ℓ] 2 M j    , 5.100 uniformly in ℓ = 0, . . . , ℓ B . Statistics of mesoscopic trajectories. 5.89 together with the bound 5.100 suggests the follow- ing notion of goodness of mesoscopic trajectories x : 1585 Definition 5.3. We say that a mesoscopic trajectory x = x −ℓ A , . . . , x ℓ B is good, and write x ∈ T A ,B , if it passes through G N , satisfies 5.90 and its analog for the reversed chain and, in addition, it satisfies ℓ B −1 X ℓ=−ℓ A exp    O ε n X j=1 τ j [ℓ] 2 M j    φ A ,B x ℓ , x ℓ+1 ≤ 1 + Oε. 5.101 By construction 5.65 automatically holds for any x ∈ T A ,B . Therefore, our target lower bound 5.66 on microscopic capacities will follow from Proposition 5.4. Let f A ,B be the mesoscopic flow constructed in Subsections 5.3 and 5.4, and let the set of mesoscopic trajectories T A ,B be as in Definition 5.3. Then 5.64 holds. Proof. By 5.49 we may assume that there exists C 0 such that, for all x under consideration and for all ℓ = −ℓ A , . . . , ℓ B − 1, φ A ,B x ℓ , x ℓ+1 ≤ e −Cℓ 2 N . 5.102 In view of 5.2 it is enough to check that ℓ B −1 X ℓ=0      exp    O ε n X j=1 τ j [ℓ] 2 M j    − 1      φ A ,B x ℓ , x ℓ+1 = Oε, 5.103 with P f A ,B N -probabilities of order 1 − o 1. Fix δ 0 small and split the sum on the left hand side of 5.103 into two sums corresponding to the terms with ℓ ≤ N 1 2−δ and ℓ N 1 2−δ respectively. Clearly, n X j=1 τ j [ℓ] 2 M j = o 1, 5.104 uniformly in 0 ≤ ℓ ≤ N 1 2−δ . On the other hand, from our construction of the mesoscopic flow f A ,B , namely from the choice 5.19 of transition rates inside G N , and from the property 3.34 of the minimizing curve ˆ x ·, it follows that there exists a universal ε-independent constant, K ∞, such that P f A ,B N ‚ max j max ℓN 1 2−δ τ j [ℓ] ℓρ j K Œ = o 1. 5.105 Therefore, up to P f A ,B N -probabilities of order o 1, the inequality O ε n X j=1 τ 2 j [ℓ] M j ≤ OεK 2 ℓ 2 n X j=1 ρ 2 j M j = K 2 O ε ℓ 2 N , 5.106 holds uniformly in ℓ N 1 2−δ . A comparison with 5.102 yields 5.103. The last proposition leads to the inequality 5.66, which, together the upper bound given in 4.64, concludes the proof of Theorem 1.3. 1586 6 Sharp estimates on the mean hitting times In this section we conclude the proof of Theorem 1.2. To do this we will use Equation 2.12 with A = S [m ∗ ] and B = S [M], where m ∗ is a local minimum of F β,N and M is the set of minima deeper than m ∗ . The denominator on the right-hand side of 2.12, the capacity, is controlled by Theorem 1.3. What we want to prove now is that the equilibrium potential, h

A,B

σ, is close to one in the neighborhood of the starting set A, and so small elsewhere that the contributions from the sum over σ away from the valley containing the set A can be neglected. Note that this is not generally true but depends on the choice of sets A and B: the condition that all minima m of F β,N such that F β,N m F β,N m ∗ belong to the target set B is crucial. In earlier work see, e.g., [5] the standard way to estimate the equilibrium potential h

A,B

σ was to use the renewal inequality h

A,B

σ ≤ cap A,σ cap B,σ and bounds on capacities. This bound cannot be used here, since the capacities of single points are too small. In other words, hitting times of fixed microscopic configurations are separated on exponential scales from hitting times of the corresponding mesoscopic neighborhoods. We will therefore use another method to cope with this problem.

6.1 Mean hitting time and equilibrium potential

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52