Propagation of errors along microscopic paths

Then the microscopic flow through an admissible bound, b = σ ℓ , σ ℓ+1 , is equal to f x σ ℓ , σ ℓ+1 = P x b ∈ Σ = ν x ℓ σ ℓ q ℓ σ ℓ , σ ℓ+1 = ν x ℓ σ ℓ Λ − k ℓ σ ℓ 1 + Oε . 5.62 Consequently, the expression in 5.59, and hence the second term in 5.56, is equal to ν x ℓ σ ℓ µ x ℓ β,N σ ℓ 1 + Oε ≡ Ψ ℓ σ ℓ 1 + Oε . 5.63 Main result. We claim that there exists a set, T A ,B , of good mesoscopic trajectories from A to B, such that P f A ,B N € X A ,B ∈ T A ,B Š = 1 − o 1, 5.64 and, uniformly in x ∈ T A ,B , E x    ℓ B −1 X ℓ=−ℓ A Ψ ℓ σ ℓ φ A ,B x ℓ , x ℓ+1    ≤ 1 + Oε. 5.65 This will imply that, capA, B ≥ Φ N eg 1 − Oε , 5.66 which is the lower bound necessary to prove Theorem 1.3. The rest of the Section is devoted to the proof of 5.65. First of all we derive recursive estimates on Ψ ℓ for a given realization, x , of the mesoscopic chain. After that it will be obvious how to define T A ,B .

5.6 Propagation of errors along microscopic paths

Let x be given. Notice that µ x ℓ β,N is the product measure, µ x ℓ β,N = n O j=1 µ x ℓ j β,N , 5.67 where µ x ℓ j β,N is the corresponding canonical measure on the mesoscopic slot S j N = {−1, 1} Λ j . On the other hand, according to 5.61, the big microscopic chain Σ splits into a direct product of n small microscopic chains, Σ 1 , . . . , Σ n , which independently evolve on S 1 N , . . . , S n N . Thus, k ℓ = k means that the ℓ-th step of the mesoscopic chain induces a step of the k-th small microscopic chain Σ k . Let τ 1 [ℓ], . . . , τ n [ℓ] be the numbers of steps performed by each of the small microscopic chains after ℓ steps of the mesoscopic chain or, equivalently, after ℓ steps of the big microscopic chain Σ. Then the corrector, Ψ ℓ , in 5.63 equals Ψ ℓ σ ℓ = n Y j=1 ψ j τ j [ℓ] σ j ℓ , 5.68 1580 where σ j ℓ is the projection of σ ℓ on S j N . Therefore we are left with two separate tasks: On the microscopic level we need to control the propagation of errors along small chains and, on the mesoscopic level, we need to control the statistics of τ 1 [ℓ], . . . , τ n [ℓ]. The latter task is related to characterizing the set, T A ,B , of good mesoscopic trajectories and it is relegated to Subsection 5.7 Small microscopic chains. It would be convenient to study the propagation of errors along small microscopic chains in the following slightly more general context: Fix 1 ≪ M ∈ N and 0 ≤ ε ≪ 1. Let g 1 , . . . , g M ∈ [−1, 1]. Consider spin configurations, ξ ∈ S M = {−1, 1} M , with product weights w ξ = e ε P i g i ξi . 5.69 As before, let Λ ± ξ = {i : ξi = ±1}. Define layers of fixed magnetization, S M [K] = ¦ ξ ∈ S M : Λ + ξ = K © . Finally, fix δ , δ 1 ∈ 0, 1, such that δ δ 1 . Set K = ⌊δ M ⌋ and r = ⌊δ 1 − δ M ⌋. We consider a Markov chain, Ξ = Ξ , . . . , Ξ r on S M , such that Ξ τ ∈ S M [K + τ] ≡ S τ M for τ = 0, 1, . . . , r. Let µ τ be the canonical measure, µ τ ξ = w ξ 1 { ξ∈S τ M } Z τ . 5.70 We take ν = µ as the initial distribution of Ξ and, following 5.61, we define transition rates, q τ ξ τ , θ + j ξ τ = e 2 εg j P i ∈Λ − ξ τ e 2 εg i . 5.71 We denote by P the law of this Markov chain and let ν τ be the distribution of Ξ τ which is concen- trated on S τ M , that is, ν τ ξ = P Ξ τ = ξ . The propagation of errors along paths of our chain is then quantified in terms of ψ τ · ≡ ν τ ·µ τ ·. Proposition 5.1. For every τ = 1, . . . , r and each ξ ∈ S τ M define B τ ξ ≡ M X i=1 e 2 εg i 1 { i ∈Λ − ξ } and A τ = µ τ B τ · = M X i=1 e 2 εg i µ τ € i ∈ Λ − · Š . 5.72 Then there exists c = c δ , δ 1 such that the following holds: For any trajectory, ξ = ξ , . . . , ξ r , of positive probability under P, it holds that ψ τ ξ τ ≤ A B ξ τ e c ετ 2 M , 5.73 for all τ = 0, 1, . . . , r. Proof. By construction, ψ ≡ 1. Let ξ τ+1 ∈ S τ+1 M . Since ν τ satisfies the recursion ν τ+1 ξ τ+1 = X j ∈Λ + ξ τ+1 ν τ θ − j ξ τ+1 q τ θ − j ξ τ+1 , ξ τ+1 , 5.74 1581 it follows that ψ τ satisfies ψ τ+1 ξ τ+1 = X j ∈Λ + ξ τ+1 ν τ θ − j ξ τ+1 q τ θ − j ξ τ+1 , ξ τ+1 µ τ+1 ξ τ+1 = X j ∈Λ + ξ τ+1 µ τ θ − j ξ τ+1 q τ θ − j ξ τ+1 , ξ τ+1 µ τ+1 ξ τ+1 ψ τ θ − j ξ τ+1 . By our choice of transition probabilities in 5.71, µ τ θ − j ξ τ+1 q τ θ − j ξ τ+1 , ξ τ+1 µ τ+1 ξ τ+1 = Z τ+1 Z τ    X i ∈Λ − θ − j ξ τ+1 e 2 εg i    −1 . 5.75 Recalling that Λ + ξ τ ≡ Λ + τ = K + τ does not depend on the particular value of ξ τ , Z τ+1 Z τ = 1 Z τ X ξ∈S τ+1 M w ξ = 1 Z τ X ξ∈S τ+1 M 1 Λ + ξ X j ∈Λ + ξ w θ − j ξe 2 εg j = 1 Z τ X ξ∈S τ M w ξ · 1 Λ + τ+1 X j ∈Λ − ξ e 2 εg j = µ τ    1 Λ + ξ τ+1 X j ∈Λ − · e 2 εg j    . We conclude that the right hand side of 5.75 equals 1 Λ + ξ τ+1 · µ τ P i ∈Λ − · e 2 εg i P i ∈Λ − θ − j ξ τ+1 e 2 εg i = 1 Λ + ξ τ+1 · A τ B τ θ − j ξ τ+1 . 5.76 As a result, ψ τ+1 ξ τ+1 = 1 Λ + ξ τ+1 X j ∈Λ + ξ τ+1 A τ B τ θ − j ξ τ+1 ψ τ θ − j ξ τ+1 . 5.77 Iterating the above procedure we arrive to the following conclusion: Consider the set, Dξ τ+1 , of all paths, ξ = ξ , . . . , ξ τ , ξ τ+1 , of positive probability from S M to S τ+1 M to ξ τ+1 . The number, D τ+1 ≡ Dξ τ+1 , of such paths does not depend on ξ τ+1 . Then, since ψ ≡ 1, ψ τ+1 ξ τ+1 = 1 D τ+1 X ξ∈Dξ τ+1 τ Y s=0 A s B s ξ s . 5.78 We claim that A s B s ξ s = 1 + O ε M A s −1 B s −1 ξ s −1 , 5.79 uniformly in all the quantities under consideration. Once 5.79 is verified, ψ τ ξ τ ≤ e O ετ 2 M max ξ ∼ξ τ A B ξ τ , 5.80 1582 where for ξ ∈ S M , the relation ξ ∼ ξ τ means that there is a path of positive probability from ξ to ξ τ . But all such ξ ’s differ at most in 2 τ coordinates. It is then straightforward to see that if ξ ∼ ξ τ and ξ ′ ∼ ξ τ , then B ξ B ξ ′ ≤ e O ετM , 5.81 and 5.73 follows. It remains to prove 5.79. Let ξ ∈ S s M and ξ ′ = θ − j ξ ∈ S s −1 M . Notice, first of all, that B s −1 ξ ′ − B s ξ = e 2 εg j = 1 + Oε. 5.82 Similarly, A s −1 − A s = M X i=1 e 2 εg i ¦ µ s −1 i ∈ Λ − − µ s i ∈ Λ − © = 1 + M X i=1 € e 2 εg i − 1 Š ¦ µ s −1 i ∈ Λ − − µ s i ∈ Λ − © . By usual local limit results for independent Bernoulli variables, µ s −1 i ∈ Λ − − µ s i ∈ Λ − = O 1 M , 5.83 uniformly in s = 1, . . . , r − 1 and i = 1, . . . , M. Hence, A s −1 − A s = 1 + Oε. Finally, both A s −1 and B s −1 ξ ′ are uniformly OM , whereas, A s −1 − B s −1 ξ ′ = M X i=1 € e 2 εg i − 1 Š n µ s −1 i ∈ Λ − − 1 { i ∈Λ − ξ ′ } o = OεM . 5.84 Hence, A s B s ξ = A s −1 − 1 + Oε B s −1 ξ ′ − 1 + Oε = A s −1 B s −1 ξ ′ 1 + O ε M , 5.85 which is 5.79. Back to the big microscopic chain. Going back to 5.68 we infer that the corrector of the big chain Σ satisfies the following upper bound: Let σ = σ , σ 1 , . . . be a trajectory of Σ as sampled from P x . Then, for every ℓ = 0, 1, . . . , ℓ B − 1, Ψ ℓ σ ℓ ≤ exp    c ε n X j=1 τ j [ℓ] 2 M j    n Y j=1   A j B j σ j   τ j [ℓ] , 5.86 where M j = Λ j = ρ j N , A j = X i ∈Λ j e 2˜h i µ x j β,N i ∈ Λ − j , and B j σ j = X i ∈Λ j e 2˜h i 1 n i ∈Λ − j σ j o . 5.87 1583 Of course, A j = µ x j β,N B j . It is enough to control the first order approximation,   A j B j σ j   τ j [ℓ] ≈ exp −τ j [ℓ] B j σ j − A j B j σ j ≡ exp € τ j [ℓ]Y j Š . 5.88 The variables Y 1 , . . . , Y n are independent once x is fixed. Thus, in view of our target, 5.65, we need to derive an upper bound of order 1 + O ε for E x ℓ B −1 X ℓ=0 exp    c ε n X j=1 τ j [ℓ] 2 M j + n X j=1 τ j [ℓ]Y j    φ A ,B x ℓ , x ℓ+1 = ℓ B −1 X ℓ=0 exp    c ε n X j=1 τ j [ℓ] 2 M j    n Y 1 µ x j β,N € e τ j [ℓ]Y j Š φ A ,B x ℓ , x ℓ+1 , 5.89 which holds with P f A ,B N -probability of order 1 − Oε.

5.7 Good mesoscopic trajectories

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52