d. In the sequel we thus assume PD ≥ k 0, which implies recalling 4.1. For site percolation, d

The phase transitions are first-order when the corresponding ˜ p is a bad local maximum point of ϕ, i.e., a bad critical point that is a local maximum point. This includes π c when sup 0,1] ϕ is attained, but not otherwise. Thus, the phase transition that occur are typically first order, but there are exceptions, see Examples 4.13 and 4.18. Remark 4.8. The behaviour at π = π c depends on more detailed properties of the degree sequences d n i n 1 , or equivalently of ˆ D n . Indeed, more precise results can be derived from Janson and Luczak [11], Theorem 3.5, at least under somewhat stricter conditions on d n i n 1 ; in particular, it then fol- lows that the width of the threshold is of the order n −12 , i.e., that there is a sequence π c n depending on d n i n 1 , with π c n → π c , such that G ∗

n, d

π,v and G ∗

n, d

π,e w.h.p. have a non-empty k-core if π = π c n + ωnn −12 with ωn → ∞, but w.h.p. an empty k-core if π = π c n − ωnn −12 , while in the intermediate case π = π c n + cn −12 with −∞ c ∞, PG ∗

n, d

π has a non-empty k-core converges to a limit depending on c in 0, 1. We leave the details to the reader. The same applies to further phase transitions that may occur. Remark 4.9. If k = 2, then 4.8 yields ϕp := hpp 2 = X j ≥2 p j j1 − 1 − p j −1 p, which is decreasing on 0, 1] or constant, when PD 2 = 0, with sup p ∈0,1] ϕp = lim p →0 ϕp = X j p j j j − 1 = E DD − 1 ≤ ∞. Hence π 2 c = λ E DD − 1 = E D E DD − 1, coinciding with the critical value in 3.11 for a giant component. Although there is no strict implication in any direction between “a giant component” and “a non- empty 2-core”, in random graphs these seem to typically appear together in the form of a large connected component of the 2-core, see Appendix A for branching process heuristics explaing this. Remark 4.10. We see again that the results for site and bond percolation are almost identi- cal. In fact, they become the same if we measure the size of the k-core in relation to the size of the percolated graph G ∗

n, d

π , since vG ∗

n, d

π,e = n but vG ∗

n, d

π,v ∼ Bin, π, so vG ∗

n, d

π,v n p −→ π. Again, this is heuristically explained by the branching process approxi- mations; see Appendix A and note that random deletions of vertices or edges yield the same result in the branching process, assuming that we do not delete the root. Proof of Theorem 4.5. The case PD ≥ k = 0 is trivial; in this case hp = 0 for all p and π c = 0 so i applies. Further, Theorem 4.1i applies to G ∗

n, d, and the result follows from

Core k G ∗

n, d

π,v ⊆ Core k G ∗

n, d. In the sequel we thus assume PD ≥ k 0, which implies

hp 0 and h 1 p 0 for 0 p ≤ 1. We apply Theorem 4.1 to the exploded graph G ∗ ˜ n, ˜

d, recalling 4.1. For site percolation,

G ∗

n, d

π,v , ˜ p j = ζ −1 πp j for j ≥ 2 by 2.15, and thus P ˜ D p = j = ζ −1 π PD p = j, j ≥ 2, 105 and, because k ≥ 2, ˜hp := E ˜D p 1[ ˜ D p ≥ k] = ζ −1 πhp, 4.10 ˜h 1 p := P ˜ D p ≥ k = ζ −1 πh 1 p. 4.11 Hence, the condition ˜hp ≥ ˜λp 2 can, using 2.18, be written πhp ≥ λp 2 . 4.12 If π π c , then for every p ∈ 0, 1], by 4.9, π π c ≤ λp 2 hp so 4.12 does not hold and ˜hp ˜ λp 2 . Hence Theorem 4.1i applies to G ∗ ˜ n, ˜

d, which proves i; note that if

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52