d with d. d on being a simple graph, i.e., on

1 Introduction One popular and important type of random graph is given by the uniformly distributed random graph with a given degree sequence, defined as follows. Let n ∈ N and let d = d i n 1 be a sequence of non-negative integers. We let Gn, d be a random graph with degree sequence d, uniformly chosen among all possibilities tacitly assuming that there is any such graph at all; in particular, P i d i has to be even. It is well-known that it is often simpler to study the corresponding random multigraph G ∗

n, d with

given degree sequence d = d i n 1 , defined for every sequence d with P i d i even by the configuration model see e.g. Bollobás [3]: take a set of d i half-edges for each vertex i, and combine the half- edges into pairs by a uniformly random matching of the set of all half-edges this pairing is called a configuration; each pair of half-edges is then joined to form an edge of G ∗

n, d.

We consider asymptotics as the numbers of vertices tend to infinity, and thus we assume throughout the paper that we are given, for each n, a sequence d n = d n i n 1 with P i d n i even. As usual, we could somewhat more generally assume that we are given a sequence n ν → ∞ and for each ν a sequence d ν = d ν i n ν 1 . For notational simplicity we will usually not show the dependency on n explicitly; we thus write d and d i , and similarly for other deterministic or random quantities introduced below. All unspecified limits and other asymptotic statements are for n → ∞. For example, w.h.p. with high probability means ’with probability tending to 1 as n → ∞’, and p −→ means ’convergence in probability as n → ∞’. Similarly, we use o p and O p in the standard way, always implying n → ∞. For example, if X is a parameter of the random graph, X = o p n means that PX ǫn → 0 as n → ∞ for every ǫ 0; equivalently, X n p −→ 0. We may obtain Gn, d by conditioning the multigraph G ∗

n, d on being a simple graph, i.e., on

not having any multiple edges or loops. By Janson [9] with earlier partial results by many authors, lim inf P G ∗

n, d is simple 0 ⇐⇒

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52