it follows that v C d

Consider one of our percolation models G ∗

n, d

π , and construct it using explosions and an inter- mediate random graph G ∗ ˜ n, ˜ d as described in the introduction. Recall that ˜ d is random, while d and the limiting probabilities p j and ˜ p j are not. Let C j := C j G ∗

n, d

π and ˜ C j := C j G ∗ ˜ n, ˜ d denote the components of G ∗

n, d

π , and G ∗ ˜ n, ˜

d, respectively.

As remarked in Section 2, we may assume that G ∗ ˜ n, ˜ d too satisfies Condition 2.1, with p j replaced by ˜ p j . At least a.s.; recall that ˜ d is random. Hence, assuming ˜ p 1 0, if we first condition on ˜

d, then Theorem 3.1 applies immediately to the exploded graph G

∗ ˜ n, ˜

d. We also have to remove

n + randomly chosen “red” vertices of degree 1, but luckily this will not break up any component. Consequently, if E ˜ D ˜ D − 2 0, then G ∗ ˜ n, ˜ d w.h.p. has a giant component ˜ C 1 , with v ˜ C 1 , v j ˜ C 1 and e ˜ C 1 given by Theorem 3.1 with p j replaced by ˜ p j , and after removing the red vertices, the remainder of ˜ C 1 is still connected and forms a component C in G ∗

n, d

π . Furthermore, since E ˜ D ˜ D − 2 0, ˜p j 0 for at least one j 2, and it follows by 3.2 that ˜ C 1 contains cn + o p n vertices of degree j, for some c 0; all these belong to C although possibly with smaller degrees, so C contains w.h.p. at least cn2 vertices. Moreover, all other components of G ∗

n, d

π are contained in components of G ∗ ˜ n, ˜ d different from ˜ C 1 , and thus at most as large as ˜ C 2 , which by Theorem 3.1 has o p ˜ n = o p n vertices. Hence, w.h.p. C is the largest component C 1 of G ∗

n, d

π , and this is the unique giant component in G ∗

n, d

π . Since we remove a fraction n + ˜ n 1 of all vertices of degree 1, we remove by the law of large numbers for a hypergeometric distribution about the same fraction of the vertices of degree 1 in the giant component ˜ C 1 . More precisely, by 3.2, ˜ C 1 contains about a fraction 1 − ξ of all vertices of degree 1, where g ′ ˜ D ξ = ˜ λξ; hence the number of red vertices removed from ˜ C 1 is 1 − ξn + + o p n. 3.4 By 3.1 and 3.4, v C 1 = v ˜ C 1 − 1 − ξn + + o p n = ˜ n 1 − g ˜ D ξ − n + + n + ξ + o p n. 3.5 Similarly, by 3.3 and 3.4, since each red vertex that is removed from C 1 also removes one edge with it, e C 1 = e ˜ C 1 − 1 − ξn + + o p n = 1 2 ˜ λ˜ n1 − ξ 2 − 1 − ξn + + o p n. 3.6 The case E ˜ D ˜ D − 2 ≤ 0 is even simpler; since the largest component C 1 is contained in some component ˜ C j of G ∗ ˜ n, ˜

d, it follows that v C

1 ≤ v ˜ C j ≤ v ˜ C 1 = o p ˜ n = o p n. This leads to the following results, where we treat site and bond percolation separately and add formulas for the asymptotic size of C 1 . Theorem 3.5. Consider the site percolation model G ∗

n, d

π ,v , and suppose that Condition 2.1 holds and that π = π d ∞ with 0 ≤ π d ≤ 1; suppose further that there exists j ≥ 1 such that p j 0 and π j 1. Then there is w.h.p. a giant component if and only if ∞ X j=0 j j − 1π j p j λ := ∞ X j=0 j p j . 3.7 i If 3.7 holds, then there is a unique ξ = ξ v π ∈ 0, 1 such that ∞ X j=1 j π j p j 1 − ξ j −1 = λ1 − ξ 3.8 96 and then v C 1 n p −→ χ v π := ∞ X j=1 π j p j 1 − ξ j 0, 3.9 e C 1 n p −→ µ v π := 1 − ξ ∞ X j=1 j π j p j − 1 − ξ 2 2 ∞ X j=1 j p j . 3.10 Furthermore, v C 2 n p −→ 0 and eC 2 n p −→ 0. ii If 3.7 does not hold, then v C 1 n p −→ 0 and eC 1 n p −→ 0. Proof. We apply Theorem 3.1 to G ∗ ˜ n, ˜ d as discussed above. Note that ˜ p 1 0 by 2.15 and the assumption 1 − π j p j 0 for some j. By 2.15, ζ E ˜ D ˜ D − 2 = ζ ∞ X j=0 j j − 2˜p j = ∞ X j=1 j j − 2π j p j − ∞ X j=1 j1 − π j p j = ∞ X j=1 j j − 1π j p j − ∞ X j=1 j p j . Hence, the condition E ˜ D ˜ D − 2 0 is equivalent to 3.7. In particular, it follows that v C 2 = o p n in i and vC 1 = o p n in ii. That also eC 2 = o p n in i and e C 1 = o p n in ii follows by Remark 2.2 applied to G ∗ ˜ n, ˜ d. It remains only to verify the formulas 3.8–3.10. The equation g ′ ˜ D ξ = ˜ λξ is by 2.18 equivalent to ζg ′ ˜ D ξ = λξ, which can be written as 3.8 by 2.15 and a simple calculation. By 3.5, using 2.10, 2.14 and 2.19, v C 1 n p −→ ζ − ζg ˜ D ξ − 1 − ξ ∞ X j=1 j1 − π j p j = ∞ X j=0 π j p j − ∞ X j=0 π j p j ξ j + j1 − π j p j ξ + ξ ∞ X j=0 j1 − π j p j = ∞ X j=0 π j p j 1 − ξ j . Similarly, by 3.6, 2.18, 2.14 and 2.10, e C 1 n p −→ 1 2 λ1 − ξ 2 − 1 − ξ ∞ X j=1 j1 − π j p j = 1 − ξ ∞ X j=1 j π j p j − 1 − ξ 2 2 λ. In the standard case when all π d = π, this leads to a simple criterion, which earlier has been shown by Britton, Janson and Martin-Löf [4] and Fountoulakis [7] by different methods. A modification of the usual branching process argument for G ∗ n, d in [4] and a method similar to ours in [7].

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52